Skip to main content
Log in

General order conditions for stochastic partitioned Runge–Kutta methods

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper stochastic partitioned Runge–Kutta (SPRK) methods are considered. A general order theory for SPRK methods based on stochastic B-series and multicolored, multishaped rooted trees is developed. The theory is applied to prove the order of some known methods, and it is shown how the number of order conditions can be reduced in some special cases, especially that the conditions for preserving quadratic invariants can be used as simplifying assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abia, L., Sanz-Serna, J.: Partitioned Runge–Kutta methods for separable Hamiltonian problems. Math. Comput. 60(202), 617–634 (1993). https://doi.org/10.2307/2153105

    Article  MathSciNet  MATH  Google Scholar 

  2. Ableidinger, M., Buckwar, E., Hinterleitner, H.: A stochastic version of the Jansen and Rit neural mass model: analysis and numerics. J. Math. Neurosci. 7(1), 8 (2017). https://doi.org/10.1186/s13408-017-0046-4

    Article  MathSciNet  Google Scholar 

  3. Anmarkrud, S., Kværnø, A.: Order conditions for stochastic Runge–Kutta methods preserving quadratic invariants of Stratonovich SDEs. J. Comput. Appl. Math. 316, 40–46 (2017). https://doi.org/10.1016/j.cam.2016.08.042

    Article  MathSciNet  MATH  Google Scholar 

  4. Burrage, K., Burrage, P.M.: High strong order explicit Runge–Kutta methods for stochastic ordinary differential equations. Appl. Numer. Math. 22(1–3), 81–101 (1996). https://doi.org/10.1016/S0168-9274(96)00027-X. (Special issue celebrating the centenary of Runge–Kutta methods)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burrage, K., Burrage, P.M.: Order conditions of stochastic Runge–Kutta methods by \(B\)-series. SIAM J. Numer. Anal. 38(5), 1626–1646 (2000). https://doi.org/10.1137/S0036142999363206

    Article  MathSciNet  MATH  Google Scholar 

  6. Burrage, K., Lythe, G.: Accurate stationary densities with partitioned numerical methods for stochastic differential equations. SIAM J. Numer. Anal. 47(3), 1601–1618 (2009). https://doi.org/10.1137/060677148

    Article  MathSciNet  MATH  Google Scholar 

  7. Burrage, P.M.: Runge–Kutta methods for stochastic differential equations. Ph.D. thesis, The University of Queensland, Brisbane (1999)

  8. Butcher, J.C.: Coefficients for the study of Runge–Kutta integration processes. J. Aust. Math. Soc. 3, 185–201 (1963). https://doi.org/10.1017/S1446788700027932

    Article  MathSciNet  MATH  Google Scholar 

  9. Debrabant, K., Kværnø, A.: B-series analysis of stochastic Runge–Kutta methods that use an iterative scheme to compute their internal stage values. SIAM J. Numer. Anal. 47(1), 181–203 (2008/09). https://doi.org/10.1137/070704307

  10. Debrabant, K., Kværnø, A.: Stochastic Taylor expansions: weight functions of B-series expressed as multiple integrals. Stoch. Anal. Appl. 28(2), 293–302 (2010). https://doi.org/10.1080/07362990903546504

    Article  MathSciNet  MATH  Google Scholar 

  11. Grønbech-Jensen, N., Farago, O.: A simple and effective Verlet-type algorithm for simulating Langevin dynamics. Mol. Phys. 111(8), 983–991 (2013). https://doi.org/10.1080/00268976.2012.760055

    Article  Google Scholar 

  12. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, Springer Series in Computational Mathematics, vol. 31. Springer, Heidelberg (2010). https://doi.org/10.1007/3-540-30666-8

    MATH  Google Scholar 

  13. Holm, D., Tyranowski, T.: Stochastic discrete Hamiltonian variational integrators. arXiv:1609.00463 [math.NA] (2016)

  14. Hong, J., Xu, D., Wang, P.: Preservation of quadratic invariants of stochastic differential equations via Runge–Kutta methods. Appl. Numer. Math. 87, 38–52 (2015). https://doi.org/10.1016/j.apnum.2014.08.003

    Article  MathSciNet  MATH  Google Scholar 

  15. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations, Applications of Mathematics (New York), vol. 23. Springer, Berlin (1992). https://doi.org/10.1007/978-3-662-12616-5

    Book  MATH  Google Scholar 

  16. Komori, Y.: Multi-colored rooted tree analysis of the weak order conditions of a stochastic Runge–Kutta family. Appl. Numer. Math. 57(2), 147–165 (2007). https://doi.org/10.1016/j.apnum.2006.02.002

    Article  MathSciNet  MATH  Google Scholar 

  17. Komori, Y., Mitsui, T., Sugiura, H.: Rooted tree analysis of the order conditions of ROW-type scheme for stochastic differential equations. BIT 37(1), 43–66 (1997). https://doi.org/10.1007/BF02510172

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma, Q., Ding, D., Ding, X.: Symplectic conditions and stochastic generating functions of stochastic Runge–Kutta methods for stochastic Hamiltonian systems with multiplicative noise. Appl. Math. Comput. 219(2), 635–643 (2012). https://doi.org/10.1016/j.amc.2012.06.053

    MathSciNet  MATH  Google Scholar 

  19. Ma, Q., Ding, X.: Stochastic symplectic partitioned Runge–Kutta methods for stochastic Hamiltonian systems with multiplicative noise. Appl. Math. Comput. 252, 520–534 (2015). https://doi.org/10.1016/j.amc.2014.12.045

    MathSciNet  MATH  Google Scholar 

  20. Milstein, G.N.: Numerical Integration of Stochastic Differential Equations, Mathematics and Its Applications, vol. 313. Kluwer Academic Publishers Group, Dordrecht (1995). https://doi.org/10.1007/978-94-015-8455-5. (Translated and revised from the 1988 Russian original)

    Google Scholar 

  21. Milstein, G.N., Repin, Y.M., Tretyakov, M.V.: Numerical methods for stochastic systems preserving symplectic structure. SIAM J. Numer. Anal. 40(4), 1583–1604 (2002). https://doi.org/10.1137/S0036142901395588

    Article  MathSciNet  MATH  Google Scholar 

  22. Milstein, G.N., Repin, Y.M., Tretyakov, M.V.: Symplectic integration of Hamiltonian systems with additive noise. SIAM J. Numer. Anal. 39(6), 2066–2088 (2002). https://doi.org/10.1137/S0036142901387440

    Article  MathSciNet  MATH  Google Scholar 

  23. Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Scientific Computation. Springer, Berlin (2004). https://doi.org/10.1007/978-3-662-10063-9

    Book  MATH  Google Scholar 

  24. Øksendal, B.: Stochastic Differential Equations. Universitext, 6th edn. Springer, Berlin (2003). https://doi.org/10.1007/978-3-642-14394-6

    Book  Google Scholar 

  25. Rößler, A.: Stochastic Taylor expansions for the expectation of functionals of diffusion processes. Stoch. Anal. Appl. 22(6), 1553–1576 (2004). https://doi.org/10.1081/SAP-200029495

    Article  MathSciNet  Google Scholar 

  26. Rößler, A.: Rooted tree analysis for order conditions of stochastic Runge–Kutta methods for the weak approximation of stochastic differential equations. Stoch. Anal. Appl. 24(1), 97–134 (2006). https://doi.org/10.1080/07362990500397699

    Article  MathSciNet  MATH  Google Scholar 

  27. Sanz-Serna, J.M., Abia, L.: Order conditions for canonical Runge–Kutta schemes. SIAM J. Numer. Anal. 28(4), 1081–1096 (1991). https://doi.org/10.1137/0728058

    Article  MathSciNet  MATH  Google Scholar 

  28. Seeßelberg, M., Breuer, H.P., Mais, H., Petruccione, F., Honerkamp, J.: Simulation of one-dimensional noisy Hamiltonian systems and their application to particle storage rings. Zeitschrift für Physik C Particles and Fields 62(1), 63–73 (1994). https://doi.org/10.1007/BF01559525

    Article  Google Scholar 

  29. Wang, P., Hong, J., Xu, D.: Construction of symplectic Runge–Kutta methods for stochastic Hamiltonian systems. Commun. Comput. Phys. 21(1), 237–270 (2017). https://doi.org/10.4208/cicp.261014.230616a

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Debrabant.

Additional information

Communicated by David Cohen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anmarkrud, S., Debrabant, K. & Kværnø, A. General order conditions for stochastic partitioned Runge–Kutta methods. Bit Numer Math 58, 257–280 (2018). https://doi.org/10.1007/s10543-017-0693-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-017-0693-6

Keywords

Mathematics Subject Classification

Navigation