Skip to main content
Log in

Ubiquitous evaluation of layer potentials using Quadrature by Kernel-Independent Expansion

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We introduce a quadrature scheme—QBKIX —for the ubiquitous high-order accurate evaluation of singular layer potentials associated with general elliptic PDEs, i.e., a scheme that yields high accuracy at all distances to the domain boundary as well as on the boundary itself. Relying solely on point evaluations of the underlying kernel, our scheme is essentially PDE-independent; in particular, no analytic expansion nor addition theorem is required. Moreover, it applies to boundary integrals with singular, weakly singular, and hypersingular kernels. Our work builds upon quadrature by expansion, which approximates the potential by an analytic expansion in the neighborhood of each expansion center. In contrast, we use a sum of fundamental solutions lying on a ring enclosing the neighborhood, and solve a small dense linear system for their coefficients to match the potential on a smaller concentric ring. We test the new method with Laplace, Helmholtz, Yukawa, Stokes, and Navier (elastostatic) kernels in two dimensions (2D) using adaptive, panel-based boundary quadratures on smooth and corner domains. Advantages of the algorithm include its relative simplicity of implementation, immediate extension to new kernels, dimension-independence (allowing simple generalization to 3D), and compatibility with fast algorithms such as the kernel-independent FMM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. af Klinteberg, L., Tornberg, A.K.: Adaptive quadrature by expansion for layer potential evaluation in two dimensions (2017). Preprint, arXiv:1704.02219

  2. af Klinteberg, L., Tornberg, A.K.: Error estimation for quadrature by expansion in layer potential evaluation. Adv. Comput. Math. 43(1), 195–234 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alpert, B.K.: Hybrid Gauss-trapezoidal quadrature rules. SIAM J. Sci. Comput. 20, 1551–1584 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atkinson, K.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  5. Barnett, A.H.: Evaluation of layer potentials close to the boundary for Laplace and Helmholtz problems on analytic planar domains. SIAM J. Sci. Comput. 36(2), A427–A451 (2014)

    Article  MathSciNet  Google Scholar 

  6. Barnett, A.H., Betcke, T.: Stability and convergence of the method of fundamental solutions for helmholtz problems on analytic domains. J. Comput. Phys. 227(14), 7003–7026 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barnett, A.H., Wu, B., Veerapaneni, S.: Spectrally-accurate quadratures for evaluation of layer potentials close to the boundary for the 2D Stokes and Laplace equations. SIAM J. Sci. Comput. 37(4), B519–B542 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beale, J., Lai, M.C.: A method for computing nearly singular integrals. SIAM J. Numer. Anal. 38, 1902–1925 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beale, J.T., Ying, W., Wilson, J.R.: A simple method for computing singular or nearly singular integrals on closed surfaces. Commun. Comput. Phys. 20(3), 733–753 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bogomolny, A.: Fundamental solutions method for elliptic boundary value problems. SIAM J. Numer. Anal. 22(4), 644–669 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bremer, J.: On the nyström discretization of integral equations on planar curves with corners. Appl. Comput. Harmon. Anal. 32(1), 45–64 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bremer, J., Gimbutas, Z.: A Nyström method for weakly singular integral operators on surfaces. J. Comput. Phys. 231, 4885–4903 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bremer, J., Rokhlin, V.: Efficient discretization of Laplace boundary integral equations on polygonal domains. J. Comput. Phys. 229, 2507–2525 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bremer, J., Rokhlin, V., Sammis, I.: Universal quadratures for boundary integral equations on two-dimensional domains with corners. J. Comput. Phys. 229(22), 8259–8280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bruno, O.P., Kunyansky, L.A.: A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications. J. Comput. Phys. 169, 80–110 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Colton, D., Kress, R.: Inverse acoustic and electromagnetic scattering theory. In Applied Mathematical Sciences, vol. 93, 2nd edn. Springer, Berlin (1998)

  17. Corona, E., Rahimian, A., Zorin, D.: A tensor-train accelerated solver for integral equations in complex geometries. J. Comput. Phy. 334, 145–169 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Academic Press, San Diego (1984)

    MATH  Google Scholar 

  19. Duffy, M.G.: Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM J Numer. Anal. 19(6), 1260–1262 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Epstein, C.L., Greengard, L., Klöckner, A.: On the convergence of local expansions of layer potentials. SIAM J. Numer. Anal. 51, 2660–2679 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Farina, L.: Evaluation of single layer potentials over curved surfaces. SIAM J. Sci. Comput. 23(1), 81–91 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ganesh, M., Graham, I.: A high-order algorithm for obstacle scattering in three dimensions. J. Comput. Phys. 198(1), 211–242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Graglia, R.D., Lombardi, G.: Machine precision evaluation of singular and nearly singular potential integrals by use of gauss quadrature formulas for rational functions. IEEE Trans. Antennas Propag. 56(4), 981–998 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Graham, I., Sloan, I.: Fully discrete spectral boundary integral methods for Helmholtz problems on smooth closed surfaces in \({\mathbb{R}}^3\). Numer. Math. 92(2), 289–323 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hackbusch, W., Sauter, S.A.: On numerical cubatures of nearly singular surface integrals arising in bem collocation. Computing 52(2), 139–159 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hao, S., Barnett, A.H., Martinsson, P.G., Young, P.: High-order accurate Nyström discretization of integral equations with weakly singular kernels on smooth curves in the plane. Adv. Comput. Math. 40(1), 245–272 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Helsing, J.: Integral equation methods for elliptic problems with boundary conditions of mixed type. J. Comput. Phys. 228, 8892–8907 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Helsing, J.: Solving integral equations on piecewise smooth boundaries using the RCIP method: a tutorial (2012). arXiv:1207.6737v3

  29. Helsing, J., Ojala, R.: On the evaluation of layer potentials close to their sources. J. Comput. Phys. 227, 2899–2921 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hsiao, G., Wendland, W.L.: Boundary Integral Equations. Applied Mathematical Sciences, vol. 164. Springer, Berlin (2008)

    Book  Google Scholar 

  31. Järvenpää, S., Taskinen, M., Ylä-Oijala, P.: Singularity extraction technique for integral equation methods with higher order basis functions on plane triangles and tetrahedra. Int. J. Numer. Meth. Eng. 58(8), 1149–1165 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Johnson, C.G., Scott, L.R.: An analysis of quadrature errors in second-kind boundary integral methods. SIAM J. Numer. Anal. 26(6), 1356–1382 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kapur, S., Rokhlin, V.: High-order corrected trapezoidal quadrature rules for singular functions. SIAM J. Numer. Anal. 34, 1331–1356 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Katsurada, M.: A mathematical study of the charge simulation method. II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36(1), 135–162 (1989)

    MathSciNet  MATH  Google Scholar 

  35. Khayat, M.A., Wilton, D.R.: Numerical evaluation of singular and near-singular potential integrals. IEEE Trans. Antennas Propag. 53(10), 3180–3190 (2005)

    Article  Google Scholar 

  36. Klöckner, A., Barnett, A.H., Greengard, L., O’Neil, M.: Quadrature by expansion: a new method for the evaluation of layer potentials. J. Comput. Phys. 252(1), 332–349 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kolm, P., Rokhlin, V.: Numerical quadratures for singular and hypersingular integrals. Comput. Math. Appl. 41(3), 327–352 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kress, R.: Boundary integral equations in time-harmonic acoustic scattering. Math. Comput. Model. 15, 229–243 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kress, R.: On the numerical solution of a hypersingular integral equation in scattering theory. J. Comput. Appl. Math. 61, 345–360 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kress, R.: Linear Integral Equations. Appl. Math. Sci., vol. 82, second edn. Springer, New York (1999)

  41. Lowengrub, J., Shelley, M., Merriman, B.: High-order and efficient methods for the vorticity formulation of the euler equations. SIAM J. Sci. Comput. 14(5), 1107–1142 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nachtigal, N.M., Reddy, S.C., Trefethen, L.N.: How fast are nonsymmetric matrix iterations? SIAM J. Matrix Anal. Appl. 13(3), 778–795 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ojala, R., Tornberg, A.K.: An accurate integral equation method for simulating multi-phase Stokes flow. J. Comput. Phys. 298, 145–160 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010). http://dlmf.nist.gov

  45. Pozrikidis, C.: Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge Tests in Applied Mathematics. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  46. Quaife, B., Biros, G.: High-volume fraction simulations of two-dimensional vesicle suspensions. J. Comput. Phys. 274, 245–267 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rachh, M., Klöckner, A., O’Neil, M.: Fast algorithms for quadrature by expansion I: Globally valid expansions. arXiv preprint arXiv:1602.05301 (2016)

  48. Rahimian, A., Lashuk, I., Veerapaneni, S.K., Chandramowlishwaran, A., Malhotra, D., Moon, L., Sampath, R., Shringarpure, A., Vetter, J., Vuduc, R., Zorin, D., Biros, G.: Petascale direct numerical simulation of blood flow on 200K cores and heterogeneous architectures. In: 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, November, pp. 1–11 (2010)

  49. Schwab, C., Wendland, W.L.: On numerical cubatures of singular surface integrals in boundary element methods. Numer. Math. 62(1), 343–369 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  50. Sidi, A., Israeli, M.: Quadrature methods for periodic singular and weakly singular fredholm integral equations. J. Sci. Comput. 3(2), 201–231 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  51. Strain, J.: Locally corrected multidimensional quadrature rules for singular functions. SIAM J. Sci. Comput. 16(4), 992–1017 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tlupova, S., Beale, J.T.: Nearly singular integrals in 3d Stokes flow. Commun. Comput. Phys. 14(5), 1207–1227 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Tornberg, A.K., Shelley, M.J.: Simulating the dynamics and interactions of flexible fibers in Stokes flows. J. Comput. Phys. 196(1), 8–40 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. Trefethen, L.N., Bau III, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  55. Veerapaneni, S.K., Rahimian, A., Biros, G., Zorin, D.: A fast algorithm for simulating vesicle flows in three dimensions. J. Comput. Phys. 230(14), 5610–5634 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Yarvin, N., Rokhlin, V.: Generalized gaussian quadratures and singular value decompositions of integral operators. SIAM J. Sci. Comput. 20(2), 699–718 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  57. Ying, L., Biros, G., Zorin, D.: A high-order 3D boundary integral equation solver for elliptic PDEs in smooth domains. J. Comput. Phys. 216, 247–275 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  58. Ying, W., Beale, J.T.: A fast accurate boundary integral method for potentials on closely packed cells. Commun. Comput. Phys. 14, 1073–1093 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We extend our thanks to Manas Rachh, Andreas Klöckner, Michael O’Neil, and Leslie Greengard for stimulating conversations about various aspects of this work. A.R. and D.Z. acknowledge the support of the US National Science Foundation (NSF) through Grant DMS-1320621; A.B. acknowledges the support of the NSF through Grant DMS-1216656.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abtin Rahimian.

Additional information

Communicated by Ralf Hiptmair.

Appendix A: List of kernels

Appendix A: List of kernels

Here we list the kernels for the single- and double-layer potentials for the PDEs considered text. In each case \({\varvec{x}}\) and \({\varvec{y}}\) are points in \(\mathbb {R}^2\) and \({\varvec{r}}\mathrel {\mathop :}={\varvec{x}}-{\varvec{y}}\). The single-layer kernel is the fundamental solution. In double-layer kernels, \({\varvec{n}}\) is the unit vector denoting the dipole direction, which in the context of boundary integral formulation is the outward pointing normal to the surface.

  • Laplace:

    $$\begin{aligned} \varDelta u&= 0, \end{aligned}$$
    (A.1)
    $$\begin{aligned} S({\varvec{x}},{\varvec{y}})&= -\frac{1}{2\pi }\log |{\varvec{r}}|,\end{aligned}$$
    (A.2)
    $$\begin{aligned} D({\varvec{x}},{\varvec{y}})&= \frac{1}{2\pi }\frac{{\varvec{r}}\cdot {\varvec{n}}}{|{\varvec{r}}|^2}, \end{aligned}$$
    (A.3)
    $$\begin{aligned} \lim _{{\varvec{y}}\rightarrow {\varvec{x}}} D({\varvec{x}},{\varvec{y}})&= -\frac{\kappa }{4\pi }, \qquad {\varvec{x}},{\varvec{y}}\in \varGamma , \quad \text {(where }\kappa \text { is the signed curvature)}. \end{aligned}$$
    (A.4)
  • Yukawa:

    $$\begin{aligned} \varDelta u- \lambda ^2 u&= 0, \end{aligned}$$
    (A.5)
    $$\begin{aligned} S({\varvec{x}},{\varvec{y}})&= \frac{1}{2\pi }K_0(\lambda |{\varvec{r}}|), \end{aligned}$$
    (A.6)
    $$\begin{aligned} D({\varvec{x}},{\varvec{y}})&= \frac{\lambda }{2\pi }\frac{{\varvec{r}}\cdot {\varvec{n}}}{|{\varvec{r}}|}K_1(\lambda |{\varvec{r}}|), \end{aligned}$$
    (A.7)

    where \(K_0, K_1\) are modified Bessel functions of the second kind of order zero and one, respectively.

  • Helmholtz:

    $$\begin{aligned} \varDelta u+ \omega ^2 u&= 0, \end{aligned}$$
    (A.8)
    $$\begin{aligned} S({\varvec{x}},{\varvec{y}})&= \frac{i}{4}H_0^1(\omega |{\varvec{r}}|), \end{aligned}$$
    (A.9)
    $$\begin{aligned} D({\varvec{x}},{\varvec{y}})&= \frac{i\omega }{4}\frac{{\varvec{r}}\cdot {\varvec{n}}}{|{\varvec{r}}|} H_1^1(\omega |{\varvec{r}}|), \end{aligned}$$
    (A.10)

    where \(H^1_0, H^1_1\) are respectively modified Hankel functions of the first kind of order zero and one.

  • Stokes:

    $$\begin{aligned} -\varDelta {\varvec{u}}+ \nabla p&= 0, \qquad {{\mathrm{\nabla \cdot }}}{\varvec{u}}= 0, \end{aligned}$$
    (A.11)
    $$\begin{aligned} S({\varvec{x}},{\varvec{y}})&= \frac{1}{4\pi }\left( -\log |{\varvec{r}}| + \frac{{\varvec{r}}\otimes {\varvec{r}}}{|{\varvec{r}}|^2}\right) , \end{aligned}$$
    (A.12)
    $$\begin{aligned} D({\varvec{x}},{\varvec{y}})&= \frac{{\varvec{r}}\cdot {\varvec{n}}}{\pi }\frac{{\varvec{r}}\otimes {\varvec{r}}}{|{\varvec{r}}|^4}, \end{aligned}$$
    (A.13)
    $$\begin{aligned} \lim _{{\varvec{y}}\rightarrow {\varvec{x}}} D({\varvec{x}},{\varvec{y}})&= -\frac{\kappa }{2\pi } \varvec{t}\otimes \varvec{t}, \end{aligned}$$
    (A.14)
    $$\begin{aligned} P({\varvec{x}},{\varvec{y}})&= -\frac{1}{\pi |{\varvec{r}}|^2} \left( 1 - 2\frac{{\varvec{r}}\otimes {\varvec{r}}}{|{\varvec{r}}|^2} \right) {\varvec{n}}. \end{aligned}$$
    (A.15)
  • Navier: Linear elasticity for isotropic material with shear modulus \(\mu \) and Poisson ratio \(\nu \),

    $$\begin{aligned}&\mu \varDelta {\varvec{u}}+ \frac{\mu }{1-2\nu } {{\mathrm{\nabla }}}{{\mathrm{\nabla \cdot }}}{\varvec{u}}= 0,\end{aligned}$$
    (A.16)
    $$\begin{aligned}&S({\varvec{x}},{\varvec{y}}) = -\frac{3-4\nu }{8\pi (1-\nu )}\log |{\varvec{r}}| + \frac{1}{8\pi (1-\nu )} \frac{{\varvec{r}}\otimes {\varvec{r}}}{|{\varvec{r}}|^2}, \end{aligned}$$
    (A.17)
    $$\begin{aligned}&D({\varvec{x}},{\varvec{y}}) = \frac{1-2\nu }{4\pi (1-\nu )}\left( \frac{{\varvec{r}}\cdot {\varvec{n}} + {\varvec{n}}\otimes {\varvec{r}}- {\varvec{r}}\otimes {\varvec{n}}}{|{\varvec{r}}|^2} + \frac{2}{1-2\nu } \frac{{\varvec{r}}\cdot {\varvec{n}}\, {\varvec{r}}\otimes {\varvec{r}}}{|{\varvec{r}}|^4}\right) . \end{aligned}$$
    (A.18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimian, A., Barnett, A. & Zorin, D. Ubiquitous evaluation of layer potentials using Quadrature by Kernel-Independent Expansion. Bit Numer Math 58, 423–456 (2018). https://doi.org/10.1007/s10543-017-0689-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-017-0689-2

Keywords

Mathematics Subject Classification

Navigation