Skip to main content

Evaluation schemes in the ring of quaternionic polynomials

Abstract

In this paper we focus on computational aspects associated with polynomial problems in the ring of one-sided quaternionic polynomials. The complexity and error bounds of quaternion arithmetic are considered and several evaluation schemes are analyzed from their complexity point of view. The numerical stability of generalized Horner’s and Goertzel’s algorithms to evaluate polynomials with quaternion floating-point coefficients is addressed. Numerical tests illustrate the behavior of the algorithms from the point of view of performance and accuracy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. In the context of this paper, a flop is any of the four elementary arithmetic operations \(+\), −, \(\times \), \(\div \).

References

  1. Clenshaw, C.W.: A note on the summation of Chebyshev series. Math. Comput. 9(51), 118–120 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  2. Davis, P.J.: Interpolation and Approximation. Blaisdell Publishing Co. Ginn and Co., New York (1963)

    MATH  Google Scholar 

  3. Falcão, M.I., Miranda, F.: Quaternions: a Mathematica package for quaternionic analysis. Lect. Notes Comput. Sci. 6784, 200–214 (2011)

    Article  Google Scholar 

  4. Gentleman, W.M.: An error analysis of Goertzel’s (Watt’s) method for computing Fourier coefficients. Comput. J. 12, 160–165 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goertzel, G.: An algorithm for the evaluation of finite trigonometric series. Am. Math. Mon. 65, 34–35 (1958)

    Article  MathSciNet  Google Scholar 

  6. Gordon, B., Motzkin, T.S.: On the zeros of polynomials over division rings I. Trans. Am. Math. Soc. 116, 218–226 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  7. Graillat, S., Langlois, P., Louvet, N.: Algorithms for accurate, validated and fast polynomial evaluation. Jpn. J. Ind. Appl. Math. 26(2–3), 191–214 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Graillat, S., Ménissier-Morain, V.: Accurate summation, dot product and polynomial evaluation in complex floating point arithmetic. Inf. Comput. 216, 57–71 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gürlebeck, K., Habetha, K.,  Sprößig, W.: Holomorphic Functions in the Plane and \(n\)-Dimensional Space. Birkhäuser, Basel (2008) Translated from the 2006 German original

  10. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  11. Jeannerod, C.-P., Rump, S.M.: Improved error bounds for inner products in floating-point arithmetic. SIAM J. Matrix Anal. Appl. 34(2), 338–344 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Knuth, D.E.: Seminumerical Algorithms, volume 2 of The Art of Computer Programming, 2nd edn. Addison-Wesley, Reading (1981)

    MATH  Google Scholar 

  13. Lam, T.-Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics. Springer, New York (1991)

    Book  Google Scholar 

  14. McNamee, J.M.: Numerical Methods for Roots of Polynomials, volume 16 of Part I. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  15. Miranda, F., Falcão, M.I.: QuaternionAnalysis package: user’s guide, technical report (2014). http://w3.math.uminho.pt/QuaternionAnalysis

  16. Newbery, A.C.R.: Error analysis for Fourier series evaluation. Math. Comput. 27(123), 639–644 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  17. Niven, I.: Equations in quaternions. Am. Math. Mon. 48, 654–661 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  18. Oliver, J.: Rounding error propagation in polynomial evaluation schemes. J. Comput. Appl. Math. 5(2), 85–97 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pogorui, A., Shapiro, M.: On the structure of the set of zeros of quaternionic polynomials. Complex Var. Theory Appl. 49(6), 379–389 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Serôdio, R., Siu, L.-S.: Zeros of quaternion polynomials. Appl. Math. Lett. 14(2), 237–239 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Smoktunowicz, A., Wróbel, I.: On improving the accuracy of Horner’s and Goertzel’s algorithms. Numer. Algorithms 38(4), 243–258 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wilkinson, J.H.: Rounding Errors in Algebraic Processes. Notes on Applied Science. Majesty’s Stationery Office, London, Prentice-Hall, Englewood Cliffs, NJ, USA (1963)

  23. Zhang, F.: Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21–57 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank an anonymous referee for the valuable and constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Irene Falcão.

Additional information

Communicated by Lars Eldén.

Research at CMAT was financed by Portuguese Funds through FCT - Fundação para a Ciência e a Tecnologia, within the Project UID/MAT/00013/2013. Research at NIPE was carried out within the funding with COMPETE reference number POCI-01-0145-FEDER-006683 (UID/ECO/03182/2013), with the FCT/MEC’s (Fundação para a Ciência e a Tecnologia, I.P.) financial support through national funding and by the ERDF through the Operational Programme on “Competitiveness and Internationalization—COMPETE 2020” under the PT2020 Partnership Agreement.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falcão, M.I., Miranda, F., Severino, R. et al. Evaluation schemes in the ring of quaternionic polynomials. Bit Numer Math 58, 51–72 (2018). https://doi.org/10.1007/s10543-017-0667-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-017-0667-8

Keywords

  • Quaternions
  • Polynomial evaluation
  • Error analysis

Mathematics Subject Classification

  • 65Y20
  • 11R52
  • 12Y05