Berdinsky, D., Kim, T., Cho, D., Bracco, C., Kiatpanichgij, S.: Bases of T-meshes and the refinement of hierarchical B-splines. Comput. Methods Appl. Mech. Eng. 283, 841–855 (2014)
MathSciNet
Article
MATH
Google Scholar
de Boor, C., Fix, M.G.: Spline approximation by quasi-interpolants. J. Approx. Theory 8, 19–45 (1973)
Article
MATH
Google Scholar
Buffa, A., Giannelli, C.: Adaptive isogeometric methods with hierarchical splines: error estimator and convergence Math. Models Methods Appl. Sci. 26, 1–25 (2016)
MathSciNet
Article
MATH
Google Scholar
Dagnino, C., Remogna, S., Sablonniere, P.: Error bounds on the approximation of functions and partial derivatives by quadratic spline quasi-interpolants on non-uniform criss-cross triangulations of a rectangular domain. BIT 53, 87–109 (2013)
MathSciNet
Article
MATH
Google Scholar
Dokken, T., Lyche, T., Pettersen, K.F.: Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Design 30, 331–356 (2013)
MathSciNet
Article
MATH
Google Scholar
Giannelli, C., Jüttler, B.: Bases and dimensions of bivariate hierarchical tensor-product splines. J. Comput. Appl. Math. 239, 162–178 (2013)
MathSciNet
Article
MATH
Google Scholar
Giannelli, C., Jüttler, B., Speleers, H.: THB-splines: the truncated basis for hierarchical splines. Comput. Aided Geom. Design 29, 485–498 (2012)
MathSciNet
Article
MATH
Google Scholar
Giannelli, C., Jüttler, B., Speleers, H.: Strongly stable bases for adaptively refined multilevel spline spaces. Adv. Comp. Math. 40, 459–490 (2014)
MathSciNet
Article
MATH
Google Scholar
Iurino, A.: BS Hermite Quasi-Interpolation Methods for Curves and Surfaces. PhD thesis, Università di Bari (2014)
Iurino, A., Mazzia, F.: The C library QIBSH for Hermite Quasi-Interpolation of Curves and Surfaces. Dipartimento di Matematica, Università degli Studi di Bari, Report 11/2013 (2013)
Kraft, R.: Adaptive and linearly independent multilevel B-splines. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 209–218. Vanderbilt University Press, Nashville (1997)
Google Scholar
Lee, B.G., Lyche, T., Mørken, K.: Some examples of quasi-interpolants constructed from local spline projectors. In: Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces: Oslo 2000, pp. 243–252. Vanderbilt University Press, Nashville (2001)
Google Scholar
Li, X., Deng, J., Chen, F.: Polynomial splines over general T-meshes. Visual Comput. 26, 277–286 (2010)
Article
Google Scholar
Lyche, T., Schumaker, L.L.: Local spline approximation. J. Approx. Theory 15, 294–325 (1975)
MathSciNet
Article
MATH
Google Scholar
Mazzia, F., Sestini, A.: The BS class of Hermite spline quasi-interpolants on nonuniform knot distributions. BIT 49, 611–628 (2009)
MathSciNet
Article
MATH
Google Scholar
Mazzia, F., Sestini, A.: Quadrature formulas descending from BS Hermite spline quasi-interpolation. J. Comput. Appl. Math. 236, 4105–4118 (2012)
MathSciNet
Article
MATH
Google Scholar
Mokriš, D., Jüttler, B., Giannelli, C.: On the completeness of hierarchical tensor-product Bsplines. J. Comput. Appl. Math. 271, 53–70 (2014)
MathSciNet
Article
MATH
Google Scholar
Speleers, H., Manni, C.: Effortless quasi-interpolation in hierarchical spaces. Numer. Math. 132, 155–184 (2016)
MathSciNet
Article
MATH
Google Scholar
Sablonniere, P.: Recent progress on univariate and multivariate polynomial and spline quasi–interpolants, trends and applications in constructive approximation. In: de Bruin, M.G., Mache, D.H., Szabados, J. (eds.) International Series of Numerical Mathematics, vol. 151, pp. 229–245 Birkhauser Verlag, Basel (2005)
Sederberg, T.W., Cardon, D.L., Finnigan, G.T., North, N.S., Zheng, J., Lyche, T.: T-spline simplification and local refinement. ACM Trans. Graph. 23, 276–283 (2004)
Article
Google Scholar
Schumaker, L.L., Wang, L.: Approximation power of polynomial splines on T-meshes. Comput. Aided Geom. Design 29, 599–612 (2012)
MathSciNet
Article
MATH
Google Scholar
Vuong, A.V., Giannelli, C., Jüttler, B., Simeon, B.: A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput. Methods Appl. Mech. Engrg. 200, 3554–3567 (2011)
MathSciNet
Article
MATH
Google Scholar