Skip to main content

Bivariate hierarchical Hermite spline quasi-interpolation


Spline quasi-interpolation (QI) is a general and powerful approach for the construction of low cost and accurate approximations of a given function. In order to provide an efficient adaptive approximation scheme in the bivariate setting, we consider quasi-interpolation in hierarchical spline spaces. In particular, we study and experiment the features of the hierarchical extension of the tensor-product formulation of the Hermite BS quasi-interpolation scheme. The convergence properties of this hierarchical operator, suitably defined in terms of truncated hierarchical B-spline bases, are analyzed. A selection of numerical examples is presented to compare the performances of the hierarchical and tensor-product versions of the scheme.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Berdinsky, D., Kim, T., Cho, D., Bracco, C., Kiatpanichgij, S.: Bases of T-meshes and the refinement of hierarchical B-splines. Comput. Methods Appl. Mech. Eng. 283, 841–855 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  2. de Boor, C., Fix, M.G.: Spline approximation by quasi-interpolants. J. Approx. Theory 8, 19–45 (1973)

    Article  MATH  Google Scholar 

  3. Buffa, A., Giannelli, C.: Adaptive isogeometric methods with hierarchical splines: error estimator and convergence Math. Models Methods Appl. Sci. 26, 1–25 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  4. Dagnino, C., Remogna, S., Sablonniere, P.: Error bounds on the approximation of functions and partial derivatives by quadratic spline quasi-interpolants on non-uniform criss-cross triangulations of a rectangular domain. BIT 53, 87–109 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  5. Dokken, T., Lyche, T., Pettersen, K.F.: Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Design 30, 331–356 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  6. Giannelli, C., Jüttler, B.: Bases and dimensions of bivariate hierarchical tensor-product splines. J. Comput. Appl. Math. 239, 162–178 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  7. Giannelli, C., Jüttler, B., Speleers, H.: THB-splines: the truncated basis for hierarchical splines. Comput. Aided Geom. Design 29, 485–498 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  8. Giannelli, C., Jüttler, B., Speleers, H.: Strongly stable bases for adaptively refined multilevel spline spaces. Adv. Comp. Math. 40, 459–490 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  9. Iurino, A.: BS Hermite Quasi-Interpolation Methods for Curves and Surfaces. PhD thesis, Università di Bari (2014)

  10. Iurino, A., Mazzia, F.: The C library QIBSH for Hermite Quasi-Interpolation of Curves and Surfaces. Dipartimento di Matematica, Università degli Studi di Bari, Report 11/2013 (2013)

  11. Kraft, R.: Adaptive and linearly independent multilevel B-splines. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 209–218. Vanderbilt University Press, Nashville (1997)

    Google Scholar 

  12. Lee, B.G., Lyche, T., Mørken, K.: Some examples of quasi-interpolants constructed from local spline projectors. In: Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces: Oslo 2000, pp. 243–252. Vanderbilt University Press, Nashville (2001)

    Google Scholar 

  13. Li, X., Deng, J., Chen, F.: Polynomial splines over general T-meshes. Visual Comput. 26, 277–286 (2010)

    Article  Google Scholar 

  14. Lyche, T., Schumaker, L.L.: Local spline approximation. J. Approx. Theory 15, 294–325 (1975)

    MathSciNet  Article  MATH  Google Scholar 

  15. Mazzia, F., Sestini, A.: The BS class of Hermite spline quasi-interpolants on nonuniform knot distributions. BIT 49, 611–628 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  16. Mazzia, F., Sestini, A.: Quadrature formulas descending from BS Hermite spline quasi-interpolation. J. Comput. Appl. Math. 236, 4105–4118 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  17. Mokriš, D., Jüttler, B., Giannelli, C.: On the completeness of hierarchical tensor-product Bsplines. J. Comput. Appl. Math. 271, 53–70 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  18. Speleers, H., Manni, C.: Effortless quasi-interpolation in hierarchical spaces. Numer. Math. 132, 155–184 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  19. Sablonniere, P.: Recent progress on univariate and multivariate polynomial and spline quasi–interpolants, trends and applications in constructive approximation. In: de Bruin, M.G., Mache, D.H., Szabados, J. (eds.) International Series of Numerical Mathematics, vol. 151, pp. 229–245 Birkhauser Verlag, Basel (2005)

  20. Sederberg, T.W., Cardon, D.L., Finnigan, G.T., North, N.S., Zheng, J., Lyche, T.: T-spline simplification and local refinement. ACM Trans. Graph. 23, 276–283 (2004)

    Article  Google Scholar 

  21. Schumaker, L.L., Wang, L.: Approximation power of polynomial splines on T-meshes. Comput. Aided Geom. Design 29, 599–612 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  22. Vuong, A.V., Giannelli, C., Jüttler, B., Simeon, B.: A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput. Methods Appl. Mech. Engrg. 200, 3554–3567 (2011)

    MathSciNet  Article  MATH  Google Scholar 

Download references


This work was supported by the programs “Finanziamento Giovani Ricercatori 2014” and “Progetti di Ricerca 2015” (Gruppo Nazionale per il Calcolo Scientifico of the Istituto Nazionale di Alta Matematica Francesco Severi, GNCS - INdAM) and by the project DREAMS (MIUR Futuro in Ricerca RBFR13FBI3).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alessandra Sestini.

Additional information

Communicated by Tom Lyche.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bracco, C., Giannelli, C., Mazzia, F. et al. Bivariate hierarchical Hermite spline quasi-interpolation. Bit Numer Math 56, 1165–1188 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • B-splines
  • Hermite quasi-interpolation
  • Hierarchical spaces
  • Truncated hierarchical B-splines

Mathematics Subject Classification

  • 65D07
  • 65D15