Skip to main content
Log in

Reconstruction of sparse Legendre and Gegenbauer expansions

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We present a new deterministic approximate algorithm for the reconstruction of sparse Legendre expansions from a small number of given samples. Using asymptotic properties of Legendre polynomials, this reconstruction is based on Prony-like methods. The method proposed is robust with respect to noisy sampled data. Furthermore we show that the suggested method can be extended to the reconstruction of sparse Gegenbauer expansions of low positive order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Backofen, R., Gräf, M., Potts, D., Praetorius, S., Voigt, A., Witkowski, T.: A continuous approach to discrete ordering on \(\mathbb{S}^2\). Multiscale Model. Simul. 9, 314–334 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bogaert, I., Michiels, B., Fostier, J.: \({\cal O}(1)\) computation of Legendre polynomials and Gauss–Legendre nodes and weights for parallel computing. SIAM J. Sci. Comput. 34(3), C83–C101 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Giesbrecht, M., Labahn, G., Lee, W.-S.: Symbolic–numeric sparse polynomial interpolation in Chebyshev basis and trigonometric interpolation. In: Proceedings of Computer Algebra in Scientific Computation (CASC 2004), pp. 195–205 (2004)

  4. Giesbrecht, M., Labahn, G., Lee, W.-S.: Symbolic–numeric sparse interpolation of multivariate polynomials. J. Symb. Comput. 44, 943–959 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Nearly optimal sparse Fourier transform. In: Proceedings of the 2012 ACM Symposium on Theory of Computing (STOC) (2012)

  6. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Simple and practical algorithm for sparse Fourier transform. In: ACM–SIAM Symposium on Discrete Algorithms (SODA), pp. 1183–1194 (2012)

  7. Iserles, A.: A fast and simple algorithm for the computation of Legendre coefficients. Numer. Math. 117(3), 529–553 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kaltofen, E., Lee, W.-S.: Early termination in sparse interpolation algorithms. J. Symb. Comput. 36, 365–400 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kershaw, D.: Some extensions of W. Gautschi’s inequalities for the Gamma function. Math. Comput. 41, 607–611 (1983)

    MathSciNet  MATH  Google Scholar 

  10. Krasikov, I.: On the Erdélyi–Magnus–Nevai conjecture for Jacobi polynomials. Constr. Approx. 28, 113–125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kunis, S., Rauhut, H.: Random sampling of sparse trigonometric polynomials II. Orthogonal matching pursuit versus basis pursuit. Found. Comput. Math. 8, 737–763 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lakshman, Y.N., Saunders, B.D.: Sparse polynomial interpolation in nonstandard bases. SIAM J. Comput. 24, 387–397 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lorch, L.: Inequalities for ultraspherical polynomials and the Gamma function. J. Approx. Theory 40, 115–120 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Peter, T., Plonka, G.: A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators. Inverse Probl. 29, 025001 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Peter, T., Plonka, G., Roşca, D.: Representation of sparse Legendre expansions. J. Symb. Comput. 50, 159–169 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Potts, D., Tasche, M.: Parameter estimation for nonincreasing exponential sums by Prony-like methods. Linear Algebra Appl. 439, 1024–1039 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Potts, D., Tasche, M.: Sparse polynomial interpolation in Chebyshev bases. Linear Algebra Appl. 441, 61–87 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rauhut, H.: Random sampling of sparse trigonometric polynomials. Appl. Comput. Harmon. Anal. 22, 16–42 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rauhut, H., Ward, R.: Sparse Legendre expansions via \({\ell _1}\)-minimization. J. Approx. Theory 164, 517–533 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rauhut, H., Ward, R.: Interpolation via weighted \({\ell _1}\)-minimization. Appl. Comput. Harmon. Anal. (in print)

  21. Szegő, G.: Orthogonal Polynomials, 4th edn. Amer. Math. Soc, Providence (1975)

    MATH  Google Scholar 

Download references

Acknowledgments

The first named author gratefully acknowledges the support by the German Research Foundation within the project PO 711/10-2. Moreover, the authors would like to thank the anonymous referees for their valuable comments, which improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Potts.

Additional information

Communicated by Michael S. Floater.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potts, D., Tasche, M. Reconstruction of sparse Legendre and Gegenbauer expansions. Bit Numer Math 56, 1019–1043 (2016). https://doi.org/10.1007/s10543-015-0598-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-015-0598-1

Keywords

Mathematics Subject Classification

Navigation