Skip to main content
Log in

Well-posedness, stability and conservation for a discontinuous interface problem

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The advection equation is studied in a completely general two domain setting with different wave-speeds and a time-independent jump-condition at the interface separating the domains. Well-posedness and conservation criteria are derived for the initial-boundary-value problem. The equations are semi-discretized using a finite difference method on Summation-By-Part (SBP) form. The relation between the stability and conservation properties of the approximation are studied when the boundary and interface conditions are weakly imposed by the Simultaneous-Approximation-Term (SAT) procedure. Numerical simulations corroborate the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and applications to high-order compact schemes. J. Comput. Phys. 129, 220–236 (1994)

  2. Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148(2), 341–365 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carpenter, M.H., Nordström, J., Gottlieb, D.: Revisiting and extending interface penalties for multi-domain summation-by-parts operators. J. Sci. Comput. 45, 118–150 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Erickson, B.A., Nordström, J.: Stable, high order accurate adaptive schemes for long time, highly intermittent geophysics problems. J. Comput. Appl. Math. 271, 328–338 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Evans, L.C.: Partial Differential Equations. AMS, New York (2002)

    Google Scholar 

  6. Fernández, D.C.D.R., Boom, P.D., Zingg, D.W.: A generalized framework for nodal first derivative summation-by-parts operators. J. Comput. Phys. Arch. 266, 214–239 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gong, J., Nordström, J.: Interface procedures for finite difference approximations of the advectiondiffusion equation. J. Comput. Appl. Math. 236(5), 602–620 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gustafsson, B., Kreiss, H.O., Oliger, J.: Time Dependent Problems and Difference Methods. Wiley, New York (1995)

    MATH  Google Scholar 

  9. Gustafsson, B., Kreiss, H.O., Sundström, A.: Stability theory of difference approximations for mixed initial boundary value problems. II. Math. Comput. 26(119), 649–686 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kozdon, J.E., Dunham, E.M., Nordström, J.: Simulation of dynamic earthquake ruptures in complex geometries using high-order finite difference methods. J. Sci. Comput. 50, 341–367 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kreiss, H.O.: Stability theory of difference approximations for mixed initial boundary value problems. I. Math. Comput. 22(104), 703–714 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kreiss, H.O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. In: Mathematical Aspects of Finite Elements in Partial Differential Equations, number 33 in Publ. Math. Res. Center Univ. Wisconsin, pp. 195–212. Academic Press, London (1974)

  13. Kreiss, H.O., Scherer, G.: On the existence of energy estimates for difference approximations for hyperbolic systems. Technical report, Uppsala University, Division of Scientific Computing (1977)

  14. LeVeque, R.: Numerical Methods for Conservation Laws. Birkhäuser, Boston (1992)

    Book  MATH  Google Scholar 

  15. Mattsson, K., Nordström, J.: High order finite difference methods for wave propagation in discontinuous media. J. Comput. Phys. 200, 249–269 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mattsson, K., Svärd, M., Nordström, J.: Stable and accurate artificial dissipation. J. Sci. Comput. 21(1), 57–79 (2004)

  17. Nordström, J.: The use of characteristic boundary conditions for the Navier–Stokes equation. Comput. Fluids 24(5), 609–623 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nordström, J.: Conservative finite difference formulation, variable coefficients, energy estimates and artificial dissipation. J. Sci. Comput. 29(3), 375–404 (2006)

  19. Nordström, J., Gustafsson, R.: High order finite difference approximations of electromagnetic wave propagation close to material discontinuities. J. Sci. Comput. 18(2), 214–234 (2003)

  20. Nordström, J., Svärd, M.: Well-posed boundary conditions for the Navier–Stokes equation. SIAM J. Numer. Anal. 43(3), 1231–1255 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Strand, B.: Summation by parts for finite difference approximations for d/dx. J. Comput. Phys. 110(1), 47–67 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina La Cognata.

Additional information

Communicated by Jan Hesthaven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Cognata, C., Nordström, J. Well-posedness, stability and conservation for a discontinuous interface problem. Bit Numer Math 56, 681–704 (2016). https://doi.org/10.1007/s10543-015-0576-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-015-0576-7

Keywords

Mathematics Subject Classification

Navigation