Advertisement

BIT Numerical Mathematics

, Volume 55, Issue 4, pp 1125–1143 | Cite as

Multilevel Monte Carlo for the Feynman–Kac formula for the Laplace equation

  • Stefan PauliEmail author
  • Robert Nicholas Gantner
  • Peter Arbenz
  • Andreas Adelmann
Article

Abstract

Since its formulation in the late 1940s, the Feynman–Kac formula has proven to be an effective tool for both theoretical reformulations and practical simulations of differential equations. The link it establishes between such equations and stochastic processes can be exploited to develop Monte Carlo sampling methods that are effective, especially in high dimensions. There exist many techniques of improving standard Monte Carlo sampling methods, a relatively new development being the so-called Multilevel Monte Carlo method. This paper investigates the applicability of multilevel ideas to the stochastic representation of partial differential equations by the Feynman–Kac formula, using the Walk on Spheres algorithm to generate the required random paths. We focus on the Laplace equation, the simplest elliptic PDE, while mentioning some extension possibilities.

Keywords

Multilevel Monte Carlo Feynman–Kac Walk on Spheres  Laplace equation 

Mathematics Subject Classification

60H30 65C05 65N99 

Notes

Acknowledgments

We thank the anonymous reviewers for their valuable comments and suggestions that improved the quality of the paper.

References

  1. 1.
    Adelmann, A., Arbenz, P., Ineichen, Y.: A fast parallel Poisson solver on irregular domains applied to beam dynamics simulations. J. Comput. Phys. 229(12), 4554–4566 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Barth, A., Schwab, C., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119(1), 123–161 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)zbMATHGoogle Scholar
  4. 4.
    Binder, I., Braverman, M.: The complexity of simulating Brownian motion. In: Proceedings of the 20th annual ACM-SIAM symposium on discrete algorithms, pp. 58–67 (2009)Google Scholar
  5. 5.
    Bruijn, N.: Asymptotic Methods in Analysis. Bibliotheca mathematica. Dover Publications, Mineola (1970)Google Scholar
  6. 6.
    Buchmann, F.M., Petersen, W.P.: Solving Dirichlet problems numerically using the Feynman–Kac representation. BIT Numer. Math. 43, 519–540 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Chang, J.: Stochastic Processes. http://www.stat.yale.edu/jtc5/251/stochastic-processes . Lecture notes (2007)
  8. 8.
    Doob, J.L.: Classical Potential Theory and Its Probabilistic Counterpart. Classics in Mathematics Series. Springer, Berlin (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gantner, R. N.: Computing the Feynman–Kac formula efficiently with multilevel Monte Carlo. Master thesis, Computer Science Department, ETH Zurich (2013)Google Scholar
  10. 10.
    Garnett, J.B., Marshall, D.E.: Harmonic Measure. Cambridge University Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Hilber, N., Reichmann, O., Schwab, C., Winter, C.: Computational Methods for Quantitative Finance: Finite Element Methods for Derivative Pricing. Springer. Springer finance, Berlin (2013)CrossRefzbMATHGoogle Scholar
  13. 13.
    Kac, M.: On distributions of certain Wiener functionals. Trans. Am. Math. Soc. 65(1), 1–13 (1949)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Mascagni, M., Hwang, C.O.: \(\varepsilon \)-Shell error analysis for “Walk on Spheres” algorithms. Math. Comput. Simul 63(2), 93–104 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Muller, M.E.: Some continuous Monte Carlo methods for the Dirichlet problem. Ann. Math. Stat. 27(3), 569–589 (1955)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Müller, F., Jenny, P., Meyer, D.W.: Multilevel Monte Carlo for two phase flow and Buckley–Leverett transport in random heterogeneous porous media. J. Comput. Phys. 250, 685–702 (2013)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Nevanlinna, R.H.: Analytic Functions. Princeton Mathematical Series. Princeton University Press, Princeton (1960)Google Scholar
  18. 18.
    Ransford, T.: Potential Theory in the Complex Plane. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  19. 19.
    Wendel, J.G.: Hitting spheres with Brownian motion. Ann. Probab. 8(1), 164–169 (1980)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Stefan Pauli
    • 1
    Email author
  • Robert Nicholas Gantner
    • 2
    • 3
  • Peter Arbenz
    • 2
  • Andreas Adelmann
    • 4
  1. 1.Computer Science Department and Seminar for Applied MathematicsETH ZurichZurichSwitzerland
  2. 2.Computer Science DepartmentETH ZurichZurichSwitzerland
  3. 3.Seminar for Applied MathematicsETH ZurichZurichSwitzerland
  4. 4.Large Research Facilities (GFA), Paul Scherrer Institute (PSI)VilligenSwitzerland

Personalised recommendations