Skip to main content
Log in

A posteriori error analysis for finite element methods with projection operators as applied to explicit time integration techniques

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We derive a posteriori error estimates for two classes of explicit finite difference schemes for ordinary differential equations. To facilitate the analysis, we derive a systematic reformulation of the finite difference schemes as finite element methods. The a posteriori error estimates quantify various sources of discretization errors, including effects arising from explicit discretization. This provides a way to judge the relative sizes of the contributions, which in turn can be used to guide the choice of various discretization parameters in order to achieve accuracy in an efficient way. We demonstrate the accuracy of the estimate and the behavior of various error contributions in a set of numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Eng. 142, 1–88 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10, 1–102 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Delfour, M., Trochu, F., Hager, W.: Discontinuous Galerkin methods for ordinary differential equations. Math. Comput. 36, 455–473 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. Acta Numer. 4, 105–158 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eriksson, K., Johnson, C., Logg, A.: Explicit time-stepping for stiff ODE’s. SIAM J. Sci. Comput. 25, 1142–1157 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Estep, D.: A posteriori error bounds and global error control for approximation of ordinary differential equations. SIAM J. Numer. Anal. 32, 1–48 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Estep, D.: Error estimates for multiscale operator decomposition for multiphysics models. In: Fish, J. (ed.) Multiscale Methods: Bridging the Scales in Science and Engineering, chap. 11. Oxford University Press, New York (2009)

    Google Scholar 

  8. Estep, D., Ginting, V., Ropp, D., Shadid, J.N., Tavener, S.: An a posteriori-a priori analysis of multiscale operator splitting. SIAM J Numer Anal 46, 1116–1146 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Estep, D., Ginting, V., Tavener, S.: A posteriori analysis of a multirate numerical method for ordinary differential equations. Comput. Methods Appl. Mech. Eng. 223, 10–27 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Estep, D., Holst, M., Mikulencak, D.: Accounting for stability: a posteriori error estimates based on residuals and variational analysis. Commun. Numer. Methods Eng. 18, 15–30 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Estep, D., Johnson, C.: The pointwise computability of the Lorenz system. Math. Models Methods Appl. Sci. 8, 1277–1306 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Estep, D.J., Larson, M.G., Williams, R.D.: Estimating the Error of Numerical Solutions of Systems of Reaction-Diffusion Equations. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  13. Estep, D.J., Stuart, A.M.: The dynamical behavior of the discontinuous Galerkin method and related difference schemes. Math. Comput. 71, 1075–1104 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Giles, M., Süli, E.: Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. Acta Numer. 11, 145–236 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Houston, P., Rannacher, R., Süli, E.: A posteriori error analysis for stabilised finite element approximations of transport problems. Comput. Methods Appl. Mech. Eng. 190, 1483–1508 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Marchuk, G.I., Agoshkov, V.I., Shutiaev, V.P.: Adjoint Equations and Perturbation Algorithms in Nonlinear Problems. CRC Press, Boca Raton (1996)

    Google Scholar 

  17. Petzold, L.R., Ascher, U.M.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998)

    MATH  Google Scholar 

  18. Sandelin, J.D.: Global estimate and control of model, numerical, and parameter error. Ph.D. thesis, Colorado State University (2007)

  19. Zhao, S., Wei, G.W.: A unified discontinuous Galerkin framework for time integration. Math. Methods Appl. Sci. 37, 1042–1071 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Estep.

Additional information

Communicated by Ralf Hiptmair.

This research is supported in part by the Defense Threat Reduction Agency (HDTRA1-09-1-0036), Department of Energy (DE-FG02-04ER25620, DE-FG02-05ER25699, DE-FC02-07ER54909, DE-SC0001724, DE-SC0005304, INL00120133), Idaho National Laboratory (00069249, 00115474), Lawrence Livermore National Laboratory (B584647, B590495), National Science Foundation (DMS-0107832, DMS-0715135, DGE-0221595003, MSPA-CSE-0434354, ECCS-0700559, DMS-1065046, DMS-1016268, DMS-FRG-1065046), National Institutes of Health (#R01GM096192).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collins, J.B., Estep, D. & Tavener, S. A posteriori error analysis for finite element methods with projection operators as applied to explicit time integration techniques. Bit Numer Math 55, 1017–1042 (2015). https://doi.org/10.1007/s10543-014-0534-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-014-0534-9

Keywords

Mathematics Subject Classification

Navigation