BIT Numerical Mathematics

, Volume 55, Issue 3, pp 797–821 | Cite as

Superconvergent \(C^1\) cubic spline quasi-interpolants on Powell-Sabin partitions

  • Driss SbibihEmail author
  • Abdelhafid Serghini
  • Ahmed Tijini
  • Ahmed Zidna


In this paper we introduce a B-spline representation of the cubic Hermite Powell-Sabin interpolant of any polynomial or any piecewise polynomial, over Powell-Sabin partitions of class at least \(C^1\), in terms of their polar forms. We use this B-spline representation for constructing several superconvergent discrete cubic spline quasi-interpolants which approximate a function \(f\) better than the superconvergent quadratic ones developed in one of our recent published papers. The new results presented in this work are an improvement and a generalization of those studied recently in the literature. We also illustrate by numerical examples that global errors and cubature rules based on these cubic Powell-Sabin spline quasi-interpolants are positively affected by the superconvergence phenomenon.


Polar forms Quasi-interpolation splines Powell-Sabin partitions 

Mathematics Subject Classification

41A05 65D05 65D15 


  1. 1.
    de Boor, C.: The quasi-interpolant as a tool in elementary polynomial spline theory. In: Berens, H., Cheney, E.W., Lorentz, G.G., Schumaker, L.L. (eds.) Approximation Theory I, pp. 269–276. Academic Press, New York (1973)Google Scholar
  2. 2.
    Carnicer, J.M., Gasca, M.: Planar configurations with simple Lagrange formulae. In: Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods in CAGD: Oslo 2000, pp. 55–62. Vanderbilt University Press, Nashville (2001)Google Scholar
  3. 3.
    Chen, S.-K., Liu, H.-W.: A bivariate \(C^1\) cubic super spline on Powell-Sabin triangulation. Comput. Math. Appl. 56, 1395–1401 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Chung, K.C., Yao, T.H.: On lattices admitting unique Lagrange interpolation. SIAM J. Numer. Math. Anal. 14, 735–743 (1977)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Dierckx, P.: On calculating normalized Powell-Sabin B-splines. Comput. Aided Geom. Des. 15, 61–78 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Fangy, Q., Yamamoto, T.: Superconvergence of finite difference approximations for convection diffusion problems. Numer. Linear Algebra Appl. 8, 99–110 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Foucher, F., Sablonnière, P.: Quadratic spline quasi-interpolants and collocation methods. Math. Comp. Simul. 79, 3455–3465 (2009)zbMATHCrossRefGoogle Scholar
  8. 8.
    Lai, M.J., Wenston, P.: Bivariate splines for fluid flows. Comput. Fluids 33, 1047–1073 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Lai, M.J., Schumaker, L.L.: Spline Functions on Triangulations. Cambridge University Press, New York (2007)zbMATHCrossRefGoogle Scholar
  10. 10.
    Lamnii, M., Mraoui, H., Tijini, A., Zidna, A.: A normalized basis for \(C^1\) cubic super spline space on Powell-Sabin triangulation. Math. Comput. Simul. 99, 108124 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Liang, X.-Z.: On the interpolation and approximation in several variables, Postgraduate Thesis, Jilin University, (1965)Google Scholar
  12. 12.
    Liu, H.-W., Chen, S.-K., Chen, Y.P.: Bivariate \(C^1\) cubic spline space over Powell-Sabin type-1 refinement. J. Inform. Comput. Sci. 4, 151–160 (2007)Google Scholar
  13. 13.
    Liu, J., Zhang, X., Yu, D.: Superconvergence and ultraconvergence of Newton-Cotes rules for supersingular integrals. J. Comput. Appl. Math. 233, 2841–2854 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Liu, D., Wu, J., Yu, D.: The superconvergence of the Newton-Cotes rule for Cauchy principal value integrals. J. Comput. Appl. Math. 235, 696–707 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Maes, J.: Powell-Sabin spline based multilevel preconditioners for elliptic partial differential equations. Phd thesis, Katholieke Universiteit Leuven, Belgium, (2006)Google Scholar
  16. 16.
    Maes, J., Vanraes, E., Dierckx, P., Bultheel, A.: On the stability of normalized Powell-Sabin B-splines. J. Comput. Appl. Math. 170(1), 181196 (2004)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Remogna, S.: Constructing good coefficient functionals for bivariate \(C^1\) quadratic spline quasi-interpolants. In: Daehlen, M., et al. (eds.) Mathematical Methods for Curves and Surfaces, LNCS 5862, pp. 329–346. Springer, Berlin (2010)CrossRefGoogle Scholar
  18. 18.
    Remogna, S.: Bivariate \(C^2\) cubic spline quasi-interpolants on uniform Powell-Sabin triangulations of a rectangular domain. Adv. Comput. Math. 36, 39–65 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Sablonnière, P., Sbibih, D., Tahrichi, M.: Numerical integration based on bivariate quadratic spline quasi-interpolants on Powell-Sabin partitions, BIT Numer. Math. 53 (1), 175–192, 743–750 (2013)Google Scholar
  20. 20.
    Sbibih, D., Serghini, A., Tijini, A.: Superconvergent quadratic splines quasi-interpolants over Powell-Sabin triangulation, Appl. Numer. Math. (submitted 2013)Google Scholar
  21. 21.
    Sbibih, D., Serghini, A., Tijini, A.: Superconvergent trivariate quadratic spline quasi-interpolants on Worsey-Piper split. J. Comput. Appl. Math. (submitted 2013)Google Scholar
  22. 22.
    Sbibih, D., Serghini, A., Tijini, A.: Polar forms and quadratic splines quasi-interpolants over Powell-Sabin triangulation. Appl. Numer. Math. 59, 938–958 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Sbibih, D., Serghini, A., Tijini, A.: Normalized trivariate B-splines on Worsey-Piper split and quasi-interpolants. BIT Numer. Math. 52, 221–249 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Sloan, J.H., Wendland, W.L.: Superconvergence of the Galerkin iterates for integral equations of the second kind. J. Integral Equ. 9, 1–23 (1985)zbMATHGoogle Scholar
  25. 25.
    Speleers, H.: A normalized basis for quintic Powell-Sabin splines. Comput. Aided Geom. Des. 27, 438–457 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Speleers, H.: A normalized basis for reduced Clough Tocher splines. Comput. Aided Geom. Des. 27, 700–712 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Speleers, H.: Multivariate normalized Powell-Sabin B-splines and quasi-interpolants. Comput. Aided Geom. Des. 30, 2–19 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Speleers, H.: Construction of normalized B-splines for a family of smooth spline spaces over Powell-Sabin triangulations. Constr. Approx. 37, 41–72 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Wahlbin, L.B.: Local behaviour in finite element methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, Vol II, Finite Element Methods (Part 1), pp. 355–522. Elsevier, Amsterdam (1991)Google Scholar
  30. 30.
    Zhang, X., Wu, J., Yu, D.: Superconvergence of the composite Simpson’s rule for a certain finite-part integral and its applications. J. Comput. Appl. Math. 223, 598–613 (2009)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Driss Sbibih
    • 1
    Email author
  • Abdelhafid Serghini
    • 2
  • Ahmed Tijini
    • 1
  • Ahmed Zidna
    • 3
  1. 1.Laboratoire MATSI, FSO-EST, URAC05Université Mohammed 1erOujdaMaroc
  2. 2.Laboratoire MATSI, EST, URAC05Université Mohammed 1erOujdaMaroc
  3. 3.LITAUniversité de LorraineMetzFrance

Personalised recommendations