Advertisement

BIT Numerical Mathematics

, Volume 55, Issue 2, pp 341–366 | Cite as

Generalized grid transfer operators for multigrid methods applied on Toeplitz matrices

  • Matthias BoltenEmail author
  • Marco Donatelli
  • Thomas Huckle
  • Christos Kravvaritis
Article

Abstract

In this paper we discuss classical sufficient conditions to be satisfied from the grid transfer operators in order to obtain optimal two-grid and V-cycle multigrid methods utilizing the theory for Toeplitz matrices. We derive relaxed conditions that allow the construction of special grid transfer operators that are computationally less expensive while preserving optimality. This is particularly useful when the generating symbol of the system matrix has a zero of higher order, like in the case of higher order PDEs. These newly derived conditions allow the use of rank deficient grid transfer operators. In this case the use of a pre-relaxation iteration that is lacking the smoothing property is proposed. Combining these pre-relaxations with the new rank deficient grid transfer operators yields a substantial reduction of the convergence rate and of the computational cost at each iteration compared with the classical choice for Toeplitz matrices. The proposed strategy, i.e. a rank deficient grid transfer operator plus a specific pre-relaxation, is applied to linear systems whose system matrix is a Toeplitz matrix where the generating symbol is a high-order polynomial. The necessity of using high-order polynomials as generating symbols for the grid transfer operators usually destroys the Toeplitz structure on the coarser levels. Therefore, we discuss some effective and computational cheap coarsening strategies found in the literature. In particular, we present numerical results showing near-optimal behavior while keeping the Toeplitz structure on the coarser levels.

Keywords

Multigrid methods Toeplitz matrices Grid transfer operators 

Mathematics Subject Classification

15B05 65F10 65N22 65N55 

References

  1. 1.
    Aricò, A., Donatelli, M.: A V-cycle multigrid for multilevel matrix algebras: proof of optimality. Numer. Math. 105, 511–547 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Aricò, A., Donatelli, M., Serra-Capizzano, S.: V-cycle optimal convergence for certain (multilevel) structured linear systems. SIAM J. Matrix Anal. Appl. 26(1), 186–214 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bakhvalov, N.S.: On the convergence of a relaxation method with natural constraints on the elliptic operator. USSR Comput. Math. Math. Phys. 6, 101–135 (1966)CrossRefGoogle Scholar
  4. 4.
    Bolten, M., Donatelli, M., Huckle, T.: Analysis of smoothed aggregation multigrid methods based on Toeplitz matrices. Preprint BUW-IMACM 13/10, Bergische Universität WuppertalGoogle Scholar
  5. 5.
    Braess, D.: Towards algebraic multigrid for elliptic problems of second order. Computing 55, 379–393 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comp. 31(138), 333–390 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Brandt, A.: Rigorous quantitative analysis of multigrid, I: constant coefficients two-level cycle with \(L_2\)-norm. SIAM J. Numer. Anal. 31, 1695–1730 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chan, R.H., Chang, Q.S., Sun, H.W.: Multigrid method for ill-conditioned symmetric Toeplitz systems. SIAM J. Sci. Comput. 19(2), 516–529 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Chan, R.H., Ng, M.K.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38(3), 427–482 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Cheng, L., Wang, H., Zhang, Z.: The solution of ill-conditioned symmetric Toeplitz systems via two-grid and wavelet methods. Comput. Math. Appl. 46(5–6), 793–804 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Donatelli, M.: An algebraic generalization of local Fourier analysis for grid transfer operators in multigrid based on Toeplitz matrices. Numer. Linear Algebra Appl. 17, 179–197 (2010)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Fedorenko, R.P.: The speed of convergence of one iterative process. USSR Compt. Math. Math. Phys. 4(3), 227–235 (1964)CrossRefGoogle Scholar
  13. 13.
    Fiorentino, G., Serra, S.: Multigrid methods for Toeplitz matrices. Calcolo 28, 238–305 (1991)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Fiorentino, G., Serra, S.: Multigrid methods for symmetric positive definite block Toeplitz matrices with nonnegative generating functions. SIAM J. Sci. Comput. 17(5), 1068–1081 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Hackbusch, W.: Convergence of multi-grid iterations applied to difference equations. Math. Comp. 34, 425–440 (1980)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Hackbusch, W.: On the convergence of multi-grid iterations. Beiträge Numer. Math. 9, 213–239 (1981)zbMATHGoogle Scholar
  17. 17.
    Hackbusch, W.: Multi-grid convergence theory. In: Hackbusch, W., Trottenberg, U. (eds.) Multigrid methods. Lecture Notes in Mathematics, vol. 960, pp. 177–219. Springer, Berlin (1982)CrossRefGoogle Scholar
  18. 18.
    Hemker, P.W.: On the order of prolongations and restrictions in multigrid procedures. J. Comput. Appl. Math. 32, 423–429 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Huckle, T., Staudacher, J.: Multigrid preconditioning and Toeplitz matrices. Electron. Trans. Numer. Anal. 13, 82–105 (2002)MathSciNetGoogle Scholar
  20. 20.
    McCormick, S.F.: Multigrid methods for variational problems: general theory for the V-cycle. SIAM J. Numer. Anal. 22(4), 634–643 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    McCormick, S.F., Ruge, J.W.: Multigrid methods for variational problems. SIAM J. Numer. Anal. 19(5), 924–929 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Napov, A., Notay, Y.: Smoothing factor, order of prolongation and actual multigrid convergence. Numer. Math. 118, 457–483 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Ruge, J.W., Stüben, K.: Algebraic multigrid. In: McCormick, S.F. (ed.) Multigrid methods, Frontiers Appl. Math., vol. 3, pp. 73–130. SIAM, Philadelphia (1987)Google Scholar
  24. 24.
    Serra, S.: Multi-iterative methods. Comput. Math. Appl. 26(4), 65–87 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Serra-Capizzano, S.: Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs matrix sequences. Numer. Math. 92, 433–465 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Serra-Capizzano, S., Tablino-Possio, C.: Multigrid methods for multilevel circulant matrices. SIAM J. Sci. Comput. 26(1), 55–85 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, San Diego (2001)zbMATHGoogle Scholar
  28. 28.
    Tyrtyshnikov, E.: A unifying approach to some old and new theorems on preconditioning and clustering. Linear Algebra Appl. 232, 1–43 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Vanek, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56, 179–196 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Wienands, R., Joppich, W.: Practical Fourier analysis for multigrid methods, Numerical Insights, vol. 4. Chapman & Hall/CRC, Boca Raton (2005)Google Scholar
  31. 31.
    Yavneh, I.: Coarse-grid correction for nonelliptic and singular pertubation problems. SIAM J. Sci. Comput. 19(5), 1682–1699 (1998)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Matthias Bolten
    • 1
    Email author
  • Marco Donatelli
    • 2
  • Thomas Huckle
    • 3
  • Christos Kravvaritis
    • 4
  1. 1.Department of Mathematics and ScienceUniversity of WuppertalWuppertalGermany
  2. 2.Dipartimento di Scienza e Alta TecnologiaUniversità dell’InsubriaComoItaly
  3. 3.Department of InformaticsTechnical University of MunichGarchingGermany
  4. 4.Department of MathematicsUniversity of AthensAthensGreece

Personalised recommendations