BIT Numerical Mathematics

, Volume 55, Issue 1, pp 255–277 | Cite as

Adaptive edge element approximation of H(curl)-elliptic optimal control problems with control constraints

  • Ronald H. W. HoppeEmail author
  • Irwin Yousept


A three-dimensional H(curl)-elliptic optimal control problem with distributed control and pointwise constraints on the control is considered. We present a residual-type a posteriori error analysis with respect to a curl-conforming edge element approximation of the optimal control problem. Here, the lowest order edge elements of Nédélec’s first family are used for the discretization of the state and the control with respect to an adaptively generated family of simplicial triangulations of the computational domain. In particular, the a posteriori error estimator consists of element and face residuals associated with the state equation and the adjoint state equation. The main results are the reliability of the estimator and its efficiency up to oscillations in terms of the data of the problem. In the last part of the paper, numerical results are included which illustrate the performance of the adaptive approach.


Optimal control of PDEs H(curl)-elliptic problems Curl-conforming edge elements Residual a posteriori error estimator Reliability and efficiency 

Mathematics Subject Classification (2010)

49M05 65K10 65N30 65N50 78M10 



The first author acknowledges support by the NSF Grants DMS-1115658, DMS-1216857, by the German National Science Foundation within the Priority Programs SPP 1253, SPP 1506, by the German Federal Ministry for Education and Research (BMBF) within the projects BMBF-FROPT and BMBF-MeFreSim, and by the European Science Foundation (ESF) within the ESF Program OPTPDE.


  1. 1.
    Ainsworth, M., Oden, T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, Chichester (2000)CrossRefzbMATHGoogle Scholar
  2. 2.
    Arnold, D., Falk, R., Winther, R.: Multigrid in H(div) and H(curl). Numer. Math. 85, 197–217 (2000)Google Scholar
  3. 3.
    Arnold, D., Falk, R., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15(2006), 1–155 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Babuska, I., Strouboulis, T.: The Finite Element Method and its Reliability. Clarendon Press, Oxford (2001)Google Scholar
  5. 5.
    Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics. ETH-Zürich. Birkhäuser, Basel (2003)Google Scholar
  6. 6.
    Beck, R., Deuflhard, P., Hiptmair, R., Hoppe, R.H.W., Wohlmuth, B.: Adaptive multilevel methods for edge element discretizations of Maxwell’s equations. Surv. Math. Ind. 8, 271–312 (1999)Google Scholar
  7. 7.
    Beck, R., Hiptmair, R., Hoppe, R.H.W., Wohlmuth, B.: Residual based a posteriori error estimators for eddy current computation. M2AN Math. Model. Numer. Anal. 34, 159–182 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97, 219–268 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Buffa, A., Ciarlet Jr, P.: On traces for functional spaces related to Maxwell’s equations. part i. Math. Meths. Appl. Sci. 24, 9–30 (2001)Google Scholar
  10. 10.
    Carstensen, C., Hoppe, R.H.W.: Convergence analysis of an adaptive edge finite element method for the 2d eddy current equations. J. Numer. Math. 13, 19–32 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Carstensen, C., Hoppe, R.H.W.: Unified framework for an a posteriori error analysis of non-standard finite element approximations of H(curl)-elliptic problems. J. Numer. Math. 17, 27–44 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Cascon, J.M., Kreuzer, Ch., Nochetto, R.H., Siebert, K.G.: Quasi-optimal rate of convergence of adaptive finite element methods. SIAM J. Numer. Anal. 46, 2524–2550 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Costabel, M., Dauge, M.: Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal. 151, 221–276 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)Google Scholar
  15. 15.
    Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Computational Differential Equations. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  16. 16.
    Gaevskaya, A., Hoppe, R.H.W., Iliash, Y., Kieweg, M.: Convergence analysis of an adaptive finite element method for distributed control problems with control constraints. In: Leugering, G., et al., (eds.) Proc. Conf. Optimal Control for PDEs, Oberwolfach, Germany, Birkhäuser, Basel (2007)Google Scholar
  17. 17.
    Hintermüller, M., Hoppe, R.H.W.: Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47, 1721–1743 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Hintermüller, M., Hoppe, R.H.W., Iliash, Y., Kieweg, M.: An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM Control Optim. Calc. Var. 14, 540–560 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Hiptmair, R.: Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36, 204–225 (1999)Google Scholar
  20. 20.
    Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numerica 11, 237–339 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer, Berlin-Heidelberg-New York (1993)Google Scholar
  22. 22.
    Hoppe, R.H.W., Schöberl, J.: Convergence of adaptive edge element methods for the 3d eddy currents equations. J. Comp. Math. 27, 657–676 (2009)CrossRefzbMATHGoogle Scholar
  23. 23.
    Houston, P., Perugia, I., Schötzau, D.: A posteriori error estimation for discontinuous Galerkin discretizations of H(curl)-elliptic partial differential equations. IMA J. Numer. Anal. 27, 122–150 (2007)Google Scholar
  24. 24.
    Kolmbauer, M., Langer, U.: A robust preconditioned minres solver for distributed time-periodic eddy current optimal control problems. SIAM J. Sci. Comput. 34, B785–B809 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Li, R., Liu, W., Ma, H., Tang, T.: Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41, 1321–1349 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Liu, W., Yan, N.: Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Series in Information and Computational Science, vol. 41. Global Science Press, Hong Kong (2008)Google Scholar
  27. 27.
    Logg, A., Mardal, K.-A., Wells, G.N.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Boston (2012)CrossRefzbMATHGoogle Scholar
  28. 28.
    Monk, P.: A posteriori error indicators for Maxwell’s equations. J. Comp. Appl. Math. 100, 173–190 (1998)Google Scholar
  29. 29.
    Monk, P.: Finite Element Methods for Maxwell Equations. Oxford University Press, Oxford (2003)CrossRefzbMATHGoogle Scholar
  30. 30.
    Nédélec, J.-C.: Mixed finite elements in \(\mathbb{R}^{3}\). Numer. Math. 35, 315–341 (1980)Google Scholar
  31. 31.
    Neittaanmäki, P., Repin, S.: Reliable Methods for Mathematical Modelling. Error Control and a Posteriori Estimates. Elsevier, New York (2004)Google Scholar
  32. 32.
    Schöberl, J.: A posteriori error estimates for Maxwell equations. Math. Comp. 77, 633–649 (2008)Google Scholar
  33. 33.
    Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7, 245–269 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Tartar, L.: Introduction to Sobolev Spaces and Interpolation Theory. Springer, Berlin (2007)Google Scholar
  35. 35.
    Tröltzsch, F.: Optimal Control of Partial Differential Equations. Theory, Methods, and Applications. American Mathematical Society, Providence (2010)Google Scholar
  36. 36.
    Tröltzsch, F., Yousept, I.: PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages. ESAIM M2AN 46, 709–729 (2012)CrossRefzbMATHGoogle Scholar
  37. 37.
    Verfürth, R.: A Review of a Posteriori Estimation and Adaptive Mesh—Refinement Techniques. Wiley-Teubner, New York (1996)zbMATHGoogle Scholar
  38. 38.
    Vexler, B., Wollner, W.: Adaptive finite elements for elliptic optimization problems with control constraints. SIAM J. Control Optim. 47, 1150–1177 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Zhong, L., Chen, L., Shu, S., Wittum, G., Xu, J.: Optimal error estimates of the Nedelec edge elements for time-harmonic Maxwell’s equations. J. Comput. Math. 27(2009), 563–572 (2009)Google Scholar
  40. 40.
    Yousept, I.: Optimal control of quasilinear H (curl)-elliptic partial differential equations in magnetostatic field problems. SIAM J. Control Optim. 51, 3624–3651 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Yousept, I.: Optimal control of Maxwell’s equations with regularized state constraints. Comput. Optim. Appl. 52, 59–581 (2012)Google Scholar
  42. 42.
    Yousept, I.: Finite element analysis of an optimal control problem in the coefficients of time-harmonic eddy current equations. J. Optim. Theory Appl. 154, 879–903 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Zhong, L., Chen, L., Shu, S., Wittum, G., Xu, J.: Convergence and optimality of adaptive edge finite element methods for time-harmonic Maxwell equations. Math. Comp. 81, 623–642 (2012)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of HoustonHoustonUSA
  2. 2.Institute of MathematicsUniversity of AugsburgAugsburgGermany
  3. 3.Graduate School of Excellence Computational EngineeringTechnical University DarmstadtDarmstadtGermany

Personalised recommendations