Skip to main content
Log in

An efficient \(\mathcal {O}(N)\) algorithm for computing \(\mathcal {O}(N^2)\) acoustic wave interactions in large \(N\)-obstacle three dimensional configurations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We develop and implement a fast and memory efficient scheme for simulating the wave interactions between large numbers of particles. This is crucial for iteratively computing a time harmonic acoustic field exterior to a configuration of the particles. The main focus of this article is on efficient computation of the wave interactions between the particles in any iterative multiple scattering approach. We develop our algorithm in four stages and demonstrate the efficiency of our interaction evaluation algorithm at each stage for configurations with several thousand convex and non-convex particles. Using this efficient approach, we simulate the full large particle wave propagation models using a flexible GMRES based inner–outer preconditioned multiple scattering iterative technique on a single compute node.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anand, A., Boubendir, Y., Ecevit, F., Reitich, F.: Analysis of multiple scattering iterations for high-frequency scattering problems. ii: the three-dimensional scalar case. Numer. Math. 114, 373–427 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Balabane, M.: Boundary decomposition for Helmholtz and Maxwell equations 1: disjoint sub-scatterers. Asymp. Anal. 38, 1–10 (2004)

  3. Cheng, H., et al.: A wideband fast multipole method for the Helmholtz equation in three dimensions. J. Comput. Phys. 216, 300–325 (2006)

  4. Chew, W.C., Jin, J., Michielssen, E., Song, J.: Fast and Efficient Algorithms in Computational Electromagnetics. Artech House, London (2001)

  5. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, Berlin (2012)

  6. Dufva, T.J., Sarvas, J., Sten, J.C.E.: Unified derivation of the translation addition theorems for the spherical and vector wave functions. Progr. Electromagnet. Res. B 4, 79–99 (2008)

    Article  Google Scholar 

  7. Ganesh, M., Graham, I.G.: A high-order algorithm for obstacle scattering in three dimensions. J. Comput. Phys. 198, 211–242 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ganesh, M., Hawkins, S.C.: A high-order algorithm for multiple electromagnetic scattering in three dimensions. Numer. Algorithms 50, 469–510 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ganesh, M., Hawkins, S.C.: Iterative algorithms for multiple electromagnetic scattering in three dimensions. In: International Conference on Days of Diffraction, pp. 63–68 (2010)

  10. Ganesh, M., Hawkins, S.C.: A stochastic pseudospectral and T-matrix algorithm for acoustic scattering by a class of multiple particle configurations. J. Quant. Spect. Radiat. Transf. 123, 41–52 (2013)

  11. Ganesh, M., Hawkins, S.C., Hiptmair, R.: Convergence analysis with parameter estimates for a reduced basis acoustic scattering T-matrix method. IMA J. Numer. Anal. 32, 1348–1374 (2012)

  12. Ganesh, M., Hesthaven, J., Stamm, B.: A reduced basis method for multiple electromagnetic scattering in three dimensions. J. Comput. Phys. 231, 7756–7779 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Graham, I.G., Spence, E., Chandler-Wilde, S., Langdon, S.: Numerical-asymptotic boundary integral methods in high-frequency scattering. ACTA Numerica 21, 89–305 (2012)

  14. Hellmers, J., Eremina, E., Wriedt, T.: Simulation of light scattering by biconcave Cassini ovals using the nullfield method with discrete sources. J. Opt. A: Pure Appl. Opt.8, 1–9 (2006)

  15. Hiptmair, R., Kielhorn, L.: BETL—a generic boundary element template library. Tech. Rep. 2012–36, Seminar for Applied Mathematics, ETH Zürich. (http://www.sam.math.ethz.ch/betl/) (2012)

  16. Martin, P.A.: Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles. Cambridge University Press, Oxford (2006)

  17. Mishchenko, M.I., Travis, L.D., Lacis, A.A.: Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering. Cambridge University Press, Oxford (2006)

  18. Mishchenko, M.I., Travis, L.D., Mackowski, D.W.: T-matrix computations of light scattering by nonspherical particles: a review. J. Quant. Spectrosc. Radiat. Transf. 55, 535–575 (1996)

    Article  Google Scholar 

  19. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)

  20. Nédélec, J.C.: Acoustic and Electromagnetic Equations. Springer, Berlin (2001)

  21. Saad, Y.: A flexible inner–outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14(2), 461–469 (1993)

  22. Śmigaj, W., Arridge, S., Betcke, T., Phillips, J., Schweiger, M.: Solving boundary integral problems with BEM++. ACM Trans. Math. Softw. (to appear, 2014). http://www.bempp.org/files/bempp-toms-preprint.pdf

  23. Song, J., Lu, C.C., Chew, W.C.: Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans. Antennas Propag. 45, 1488–1493 (1997)

    Article  Google Scholar 

  24. Wriedt, T., Hellmers, J., Eremina, E., Schuh, R.: Light scattering by single erythrocyte: comparison of different methods. J. Quant. Spectrosc. Radiat. Transf. 100, 444–456 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The research of the first author was supported, in part, by Grant DMS-1216889 from the National Science Foundation. Support of the Colorado Golden Energy Computing Organization (GECO) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ganesh.

Additional information

Communicated by Ralf Hiptmair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh, M., Hawkins, S.C. An efficient \(\mathcal {O}(N)\) algorithm for computing \(\mathcal {O}(N^2)\) acoustic wave interactions in large \(N\)-obstacle three dimensional configurations. Bit Numer Math 55, 117–139 (2015). https://doi.org/10.1007/s10543-014-0491-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-014-0491-3

Keywords

Mathematics Subject Classification (2000) 

Navigation