BIT Numerical Mathematics

, Volume 54, Issue 1, pp 219–255 | Cite as

Eigenvalue perturbation theory of symplectic, orthogonal, and unitary matrices under generic structured rank one perturbations

  • Christian MehlEmail author
  • Volker Mehrmann
  • André C. M. Ran
  • Leiba Rodman


We study the perturbation theory of structured matrices under structured rank one perturbations, with emphasis on matrices that are unitary, orthogonal, or symplectic with respect to an indefinite inner product. The rank one perturbations are not necessarily of arbitrary small size (in the sense of norm). In the case of sesquilinear forms, results on selfadjoint matrices can be applied to unitary matrices by using the Cayley transformation, but in the case of real or complex symmetric or skew-symmetric bilinear forms additional considerations are necessary. For complex symplectic matrices, it turns out that generically (with respect to the perturbations) the behavior of the Jordan form of the perturbed matrix follows the pattern established earlier for unstructured matrices and their unstructured perturbations, provided the specific properties of the Jordan form of complex symplectic matrices are accounted for. For instance, the number of Jordan blocks of fixed odd size corresponding to the eigenvalue 1 or −1 have to be even. For complex orthogonal matrices, it is shown that the behavior of the Jordan structures corresponding to the original eigenvalues that are not moved by perturbations follows again the pattern established earlier for unstructured matrices, taking into account the specifics of Jordan forms of complex orthogonal matrices. The proofs are based on general results developed in the paper concerning Jordan forms of structured matrices (which include in particular the classes of orthogonal and symplectic matrices) under structured rank one perturbations. These results are presented and proved in the framework of real as well as of complex matrices.


Symplectic matrix Orthogonal matrix Unitary matrix Indefinite inner product Cayley transformation Perturbation analysis Generic perturbation Rank one perturbation 

Mathematics Subject Classification (2010)

15A63 15A21 15A57 47A55 93B10 93B35 93C73 


  1. 1.
    Barnett, S.: Greatest common divisor of several polynomials. Proc. Camb. Philos. Soc. 70, 263–268 (1971) CrossRefzbMATHGoogle Scholar
  2. 2.
    Beitia, M.A., de Hoyos, I., Zaballa, I.: The change of the Jordan structure under one row perturbations. Linear Algebra Appl. 401, 119–134 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Brunovsky, P.: A classification of linear controllable systems. Kybernetika 6, 173–188 (1970) zbMATHMathSciNetGoogle Scholar
  4. 4.
    Chen, B.M.: Robust and H Control. Springer, London (2000) zbMATHGoogle Scholar
  5. 5.
    De Terán, F., Dopico, F.: Low rank perturbation of Kronecker structures without full rank. SIAM J. Matrix Anal. Appl. 29, 496–529 (2007) CrossRefMathSciNetGoogle Scholar
  6. 6.
    De Terán, F., Dopico, F.: Low rank perturbation of regular matrix polynomials. Linear Algebra Appl. 430, 579–586 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    De Terán, F., Dopico, F., Moro, J.: Low rank perturbation of Weierstrass structure. SIAM J. Matrix Anal. Appl. 30, 538–547 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Fuhrmann, P.A.: Linear Systems and Operators in Hilbert Space. McGraw-Hill, New York (1981) zbMATHGoogle Scholar
  9. 9.
    Gantmacher, F.R.: Theory of Matrices vol. 1. Chelsea, New York (1959) zbMATHGoogle Scholar
  10. 10.
    Godunov, S.K., Sadkane, M.: Spectral analysis and symplectic matrices with application to the theory of parametric resonance. SIAM J. Matrix Anal. Appl. 28, 1045–1069 (2006) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Gohberg, I., Heinig, G.: The resultant matrix and its generalizations. I. The resultant operator of matrix polynomials. Acta Sci. Math. 37, 41–61 (1975) (Russian) MathSciNetGoogle Scholar
  12. 12.
    Gohberg, I., Lancaster, P., Rodman, L.: Indefinite Linear Algebra and Applications. Birkhäuser, Basel (2005) zbMATHGoogle Scholar
  13. 13.
    Hörmander, L., Melin, A.: A remark on perturbations of compact operators. Math. Scand. 75, 255–262 (1994) zbMATHMathSciNetGoogle Scholar
  14. 14.
    Janse van Rensburg, D.: Structured Matrices in Indefinite Inner Product Spaces: Simple Forms, Invariant Subspaces, and Rank-one Perturbations. Ph.D. thesis, North-West University, Potchefstroom, South Africa (2012) Google Scholar
  15. 15.
    Krupnik, M.: Changing the spectrum of an operator by perturbation. Linear Algebra Appl. 167, 113–118 (1992) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Smith forms of palindromic matrix polynomials. Electron. J. Linear Algebra 22, 53–91 (2011) zbMATHMathSciNetGoogle Scholar
  17. 17.
    Mehl, C.: On classification of normal matrices in indefinite inner product spaces. Electron. J. Linear Algebra 15, 50–83 (2006) zbMATHMathSciNetGoogle Scholar
  18. 18.
    Mehl, C., Mehrmann, V., Ran, A.C.M., Rodman, L.: Eigenvalue perturbation theory of classes of structured matrices under generic structured rank one perturbations. Linear Algebra Appl. 435, 687–716 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Mehl, C., Mehrmann, V., Ran, A.C.M., Rodman, L.: Perturbation theory of selfadjoint matrices and sign characteristics under generic structured rank one perturbations. Linear Algebra Appl. 436, 4027–4042 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Mehl, C., Mehrmann, V., Ran, A.C.M., Rodman, L.: Jordan forms of real and complex matrices under rank one perturbations. Oper. Matrices 7, 381–398 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Mehrmann, V.: The Autonomous Linear Quadratic Optimal Control Problem: Theory and Numerical Solution. Lecture Notes in Control and Information Sciences., vol. Number 163. Springer, Heidelberg (1991) CrossRefGoogle Scholar
  22. 22.
    Mimura, M., Toda, H.: Topology of Lie Groups, I and II. Am. Math. Soc., Providence (1991) zbMATHGoogle Scholar
  23. 23.
    Moro, J., Dopico, F.: Low rank perturbation of Jordan structure. SIAM J. Matrix Anal. Appl. 25, 495–506 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Ran, A.C.M., Wojtylak, M.: Eigenvalues of rank one perturbations of unstructured matrices. Linear Algebra Appl. 437, 589–600 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Savchenko, S.V.: Typical changes in spectral properties under perturbations by a rank-one operator. Mat. Zametki 74, 590–602 (2003) (Russian). Translation in Math. Notes 74, 557–568 (2003) CrossRefMathSciNetGoogle Scholar
  26. 26.
    Savchenko, S.: On the change in the spectral properties of a matrix under a perturbation of a sufficiently low rank. Funkc. Anal. Prilozh. 38, 85–88 (2004) (Russian). Translation in Funct. Anal. Appl. 38, 69–71 (2004) CrossRefMathSciNetGoogle Scholar
  27. 27.
    Stewart, G.W., Sun, J.-G.: Matrix Perturbation Theory. Academic Press, Boston (1990) zbMATHGoogle Scholar
  28. 28.
    Thompson, R.C.: Invariant factors under rank one perturbations. Can. J. Math. 32, 240–245 (1980) CrossRefzbMATHGoogle Scholar
  29. 29.
    Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice Hall, New York (1995) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Christian Mehl
    • 1
    Email author
  • Volker Mehrmann
    • 1
  • André C. M. Ran
    • 2
    • 3
  • Leiba Rodman
    • 4
  1. 1.Institut für Mathematik, MA 4-5, TU BerlinBerlinGermany
  2. 2.Afdeling Wiskunde, Faculteit der Exacte WetenschappenVU AmsterdamAmsterdamThe Netherlands
  3. 3.Unit for BMINorth-West UniversityPotchefstroomSouth Africa
  4. 4.Department of MathematicsCollege of William and MaryWilliamsburgUSA

Personalised recommendations