Advertisement

BIT Numerical Mathematics

, Volume 54, Issue 1, pp 113–128 | Cite as

Comparison of software for computing the action of the matrix exponential

  • Marco Caliari
  • Peter Kandolf
  • Alexander Ostermann
  • Stefan Rainer
Article

Abstract

The implementation of exponential integrators requires the action of the matrix exponential and related functions of a possibly large matrix. There are various methods in the literature for carrying out this task. In this paper we describe a new implementation of a method based on interpolation at Leja points. We numerically compare this method with other codes from the literature. As we are interested in applications to exponential integrators we choose the test examples from spatial discretization of time dependent partial differential equations in two and three space dimensions. The test matrices thus have large eigenvalues and can be nonnormal.

Keywords

Leja interpolation Action of matrix exponential Krylov subspace method Taylor series Exponential integrators 

Mathematics Subject Classification (2010)

65F60 65D05 65L04 

References

  1. 1.
    Abdulle, A.: Fourth order Chebyshev methods with recurrence relation. SIAM J. Sci. Comput. 23(6), 2042–2055 (2002) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Al-Mohy, A.H., Higham, N.J.: Computing the action of the matrix exponential, with an application to exponential integrators. SIAM J. Sci. Comput. 33(2), 488–511 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Baglama, J., Calvetti, D., Reichel, L.: Fast Leja points. Electron. Trans. Numer. Anal. 7, 124–140 (1998) zbMATHMathSciNetGoogle Scholar
  4. 4.
    Bergamaschi, L., Caliari, M., Vianello, M.: Efficient approximation of the exponential operator for discrete 2D advection-diffusion problems. Numer. Linear Algebra Appl. 10(3), 271–289 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Caliari, M.: Accurate evaluation of divided differences for polynomial interpolation of exponential propagators. Computing 80(2), 189–201 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Caliari, M., Vianello, M., Bergamaschi, L.: Interpolating discrete advection-diffusion propagators at Leja sequences. J. Comput. Appl. Math. 172(1), 79–99 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Caliari, M., Ostermann, A., Rainer, S.: Meshfree exponential integrators. SIAM J. Sci. Comput. 35(1), A431–A452 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29(1), 209–228 (1992) CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Sidje, R.B.: Expokit: a software package for computing matrix exponentials. ACM Trans. Math. Softw. 24(1), 130–156 (1998) CrossRefzbMATHGoogle Scholar
  12. 12.
    Tambue, A., Lord, G.J., Geiger, S.: An exponential integrator for advection-dominated reactive transport in heterogeneous porous media. J. Comput. Phys. 229(10), 3957–3969 (2010) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Marco Caliari
    • 1
  • Peter Kandolf
    • 2
  • Alexander Ostermann
    • 2
  • Stefan Rainer
    • 2
  1. 1.Dipartimento di InformaticaUniversità di VeronaVeronaItaly
  2. 2.Institut für MathematikUniversität InnsbruckInnsbruckAustria

Personalised recommendations