Equivalence between modified symplectic Gram-Schmidt and Householder SR algorithms

Abstract

The SR factorization for a given matrix A is a QR-like factorization A=SR, where the matrix S is symplectic and R is J-upper triangular. This factorization is fundamental for some important structure-preserving methods in linear algebra and is usually implemented via the symplectic Gram-Schmidt algorithm (SGS).

There exist two versions of SGS, the classical (CSGS) and the modified (MSGS). Both are equivalent in exact arithmetic, but have very different numerical behaviors. The MSGS is more stable. Recently, the symplectic Householder SR algorithm has been introduced, for computing efficiently the SR factorization. In this paper, we show two new and important results. The first is that the SR factorization of a matrix A via the MSGS is mathematically equivalent to the SR factorization via Householder SR algorithm of an embedded matrix. The later is obtained from A by adding two blocks of zeros in the top of the first half and in the top of the second half of the matrix A. The second result is that MSGS is also numerically equivalent to Householder SR algorithm applied to the mentioned embedded matrix.

This is a preview of subscription content, access via your institution.

Algorithm 3.1
Algorithm 3.2
Algorithm 3.3
Algorithm 3.4

References

  1. 1.

    Agoujil, S., Bentbib, A.H.: New symplectic transformations: symplectic reflector on \(\mathbb{C}^{2n \times 2} \). Int. J. Tomogr. Stat. 11, 99–117 (2009)

    MathSciNet  Google Scholar 

  2. 2.

    Benner, P., Fassbender, H.: An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem. Linear Algebra Appl. 263, 75–111 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. 3.

    Benner, P., Fassbender, H.: An implicitly restarted symplectic Lanczos method for the symplectic eigenvalue problem. SIAM J. Matrix Anal. Appl. 22, 682–713 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. 4.

    Björck, Å.: Numerics of Gram-Schmidt orthogonalization. Linear Algebra Appl. 197/198, 297–316 (1994)

    Article  Google Scholar 

  5. 5.

    Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Google Scholar 

  6. 6.

    Björck, Å., Paige, C.C.: Loss and recapture of orthogonality in the modified Gram-Schmidt algorithm. SIAM J. Matrix Anal. Appl. 13, 176–190 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. 7.

    Bunse-Gerstner, A., Mehrmann, V.: A symplectic QR-like algorithm for the solution of the real algebraic Riccati equation. IEEE Trans. Autom. Control AC-31, 1104–1113 (1986)

    Article  MathSciNet  Google Scholar 

  8. 8.

    Della-Dora, J.: Numerical linear algorithms and group theory. Linear Algebra Appl. 10, 267–283 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  9. 9.

    Elfarouk, A.: Méthodes de réduction, conservant les structures, pour le calcul des valeurs et vecteurs propres d’une matrice structurée. PhD thesis, Univ. du Littoral, Calais, France (2006)

  10. 10.

    Fassbender, H.: Symplectic Methods for the Symplectic Eigenproblem. Kluwer Academic/Plenum Publishers, Amsterdam/New York (2000)

    Google Scholar 

  11. 11.

    Godunov, S.K., Sadkane, M.: Numerical determination of a canonical form of a symplectic matrix. Sib. Math. J. 42(4), 629–647 (2001)

    Article  MathSciNet  Google Scholar 

  12. 12.

    Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. The Johns Hopkins U.P., Baltimore (1996)

    Google Scholar 

  13. 13.

    Lancaster, P., Rodman, L.: The Algebraic Riccati Equation. Oxford U.P., Oxford (1995)

    Google Scholar 

  14. 14.

    Paige, C., Van Loan, C.: A Schur decomposition for Hamiltonian matrices. Linear Algebra Appl. 41, 11–32 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  15. 15.

    Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Co., Boston (1996)

    Google Scholar 

  16. 16.

    Sadkane, M., Salam, A.: A note on symplectic block reflectors. Electron. Trans. Numer. Anal. 33, 189–206 (2009)

    Google Scholar 

  17. 17.

    Salam, A.: On theoretical and numerical aspects of symplectic Gram-Schmidt-like algorithms. Numer. Algorithms 39, 237–242 (2005)

    Article  MathSciNet  Google Scholar 

  18. 18.

    Salam, A., Al-Aidarous, E.: Error analysis and computational aspects of SR factorization, via optimal symplectic Householder transformations. Electron. Trans. Numer. Anal. 33, 189–206 (2009)

    MathSciNet  Google Scholar 

  19. 19.

    Salam, A., Elfarouk, A.: Rounding error analysis of symplectic Gram-Schmidt algorithm. Technical report LMPA 288 (2006)

  20. 20.

    Salam, A., Al-Aidarous, E., Elfarouk, A.: Optimal symplectic Householder transformations for SR-decomposition. Linear Algebra Appl. 429, 1334–1353 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. 21.

    Salam, A., Elfarouk, A., Al-Aidarous, E.: Symplectic Householder transformations for a QR-like decomposition, a geometric and algebraic approaches. J. Comput. Appl. Math. 214, 533–548 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. 22.

    Van Loan, C.: A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix. Linear Algebra Appl. 61, 233–251 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  23. 23.

    Watkins, D.S.: The Matrix Eigenvalue Problem. SIAM, Philadelphia (2007)

    Google Scholar 

  24. 24.

    Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Salam.

Additional information

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No (1431/247/227). The second author, therefore, acknowledge with thanks DSR technical and financial support.

Communicated by Miloud Sadkane.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Salam, A., Al-Aidarous, E. Equivalence between modified symplectic Gram-Schmidt and Householder SR algorithms. Bit Numer Math 54, 283–302 (2014). https://doi.org/10.1007/s10543-013-0441-5

Download citation

Keywords

  • Symplectic Gram-Schmidt
  • Symplectic Householder transformations
  • Householder SR algorithm

Mathematics Subject Classification (2010)

  • MSC 65F15
  • MSC 65F50