Skip to main content
Log in

Explicit volume-preserving splitting methods for polynomial divergence-free vector fields

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We present new, explicit, volume-preserving splitting methods for polynomial divergence-free vector fields of arbitrary degree (both positive and negative). The main idea is to decompose the divergence polynomial by means of an appropriate basis for polynomials: the monomial basis. For each monomial basis function, the split fields are then identified by collecting the appropriate terms in the vector field so that each split vector field is volume preserving. We show that each split field can be integrated exactly by analytical methods. Thus, the composition yields a volume preserving numerical method. Our numerical tests indicate that the methods compare favorably to standard integrators both in the quality of the numerical solution and the computational effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blanes, S., Moan, P.C.: Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nyström methods. J. Comput. Appl. Math. 142, 313–330 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chartier, P., Murua, A.: Preserving first integrals and volume forms of additively split systems. IMA J. Numer. Anal. 27(2), 381–405 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dragt, A.J., Abell, D.T.: Symplectic maps and computation of orbits in particle accelerators. In: Integration Algorithms and Classical Mechanics, Toronto, ON, 1993. Fields Inst. Commun., vol. 10, pp. 59–85. Am. Math. Soc., Providence (1996)

    Google Scholar 

  4. Iserles, A., Quispel, G.R.W., Tse, P.S.P.: B-series methods cannot be volume-preserving. BIT Numer. Math. 47(2), 351–378 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kang, F., Shang, Z.J.: Volume-preserving algorithms for source-free dynamical systems. Numer. Math. 71(4), 451–463 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Mclachlan, R.I., Scovel, C.: A survey of open problems in symplectic integration. Fields Inst. Commun. 10, 151–180 (1998)

    MathSciNet  Google Scholar 

  7. McLachlan, R.I., Quispel, G.R.W.: Explicit geometric integration of polynomial vector fields. BIT Numer. Math. 44, 515–538 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. McLachlan, R.I., Munthe-Kaas, H.Z., Quispel, G.R.W., Zanna, A.: Explicit volume-preserving splitting methods for linear and quadratic divergence-free vector fields. Found. Comput. Math. 8(3), 335–355 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Neishtadt, A., Vainchtein, D., Vasiliev, A.: Adiabatic invariance in volume-preserving systems. In: IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence. IUTAM Bookser., vol. 6, pp. 89–107. Springer, Dordrecht (2008)

    Chapter  Google Scholar 

  10. Qin, M.-Z., Zhu, W.-J.: Volume-preserving schemes and numerical experiments. Comput. Math. Appl. 26, 33–42 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Quispel, G.R.W.: Volume-preserving integrators. Phys. Lett. A 206(1–2), 26–30 (1995)

    Article  MathSciNet  Google Scholar 

  12. Rangarajan, G.: Symplectic completion of symplectic jets. J. Math. Phys. 37(9), 4514–4542 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Scovel, J.C.: Symplectic numerical integration of Hamiltonian systems. In: Ratiu, T. (ed.) The Geometry of Hamiltonian Systems. MSRI, vol. 22, pp. 463–496. Springer, New York (1991)

    Chapter  Google Scholar 

  14. Shang, Z.J.: Construction of volume-preserving difference schemes for source-free systems via generating functions. J. Comput. Math. 12(3), 265–272 (1994)

    MATH  MathSciNet  Google Scholar 

  15. Stone, H.A., Nadim, A., Strogatz, S.H.: Chaotic streamlines inside drops immersed in steady Stokes flows. J. Fluid Mech. 232, 629–646 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150, 262–268 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by NFR grant GeNuIn: Geometric Numeric Integration in Applications, project no. 191178/V30.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Zanna.

Additional information

Communicated by Mechthid Thalhammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, H., Zanna, A. Explicit volume-preserving splitting methods for polynomial divergence-free vector fields. Bit Numer Math 53, 265–281 (2013). https://doi.org/10.1007/s10543-012-0394-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-012-0394-0

Keywords

Mathematics Subject Classification (2010)

Navigation