Skip to main content
Log in

A family of fully implicit Milstein methods for stiff stochastic differential equations with multiplicative noise

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper a family of fully implicit Milstein methods are introduced for solving stiff stochastic differential equations (SDEs). It is proved that the methods are convergent with strong order 1.0 for a class of SDEs. For a linear scalar test equation with multiplicative noise terms, mean-square and almost sure asymptotic stability of the methods are also investigated. We combine analytical and numerical techniques to get insights into the stability properties. The fully implicit methods are shown to be superior to those of the corresponding semi-implicit methods in term of stability property. Finally, numerical results are reported to illustrate the convergence and stability results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahmad, Sk.S., Parida, N.C., Raha, S.: The fully implicit stochastic-α method for stiff stochastic differential equations. J. Comput. Phys. 228, 8263–8282 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alcock, J., Burrage, K.: A note on the balanced method. BIT Numer. Math. 46(4), 689–710 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, L.: Stochastic Differential Equation: Theory and Application. Wiley, New York (1974)

    Google Scholar 

  4. Bodo, B.A., Thompson, M.E., Unny, T.E.: A review on stochastic differential equations for application in hydrology. Stoch. Hydrol. Hydraul. 1, 81–100 (1987)

    Article  MATH  Google Scholar 

  5. Buckwar, E., Bokor, R.H., Winkler, R.: Asymptotic mean-square stability of two-step methods for stochastic ordinary differential equations. BIT Numer. Math. 46, 261–282 (2006)

    Article  MATH  Google Scholar 

  6. Buckwar, E., Kelly, C.: Towards a systematic linear stability analysis of numerical methods for systems of stochastic differential equations. SIAM J. Numer. Anal. 48(1), 298–321 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buckwar, E., Sickenberger, T.: A comparative linear mean-square stability analysis of Maruyama and Milstein-type methods. Math. Comput. Simul. 81, 1110–1127 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burrage, K., Burrage, P.M., Tian, T.: Numerical methods for strong solutions of stochastic differential equations: an overview. In: Proceedings: Mathematical, Physical and Engineering, Royal Society of London, vol. 460, pp. 373–402 (2004)

    Google Scholar 

  9. Burrage, K., Tian, T.: The composite Euler method for stiff stochastic differential equations. J. Comput. Appl. Math. 131, 407–426 (2000)

    Article  MathSciNet  Google Scholar 

  10. Chalmers, G., Higham, D.J.: Asymptotic stability of a jump-diffusion equation and its numerical approximation. SIAM J. Sci. Comput. 31, 1141–1155 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gard, T.C.: Introduction to Stochastic Differential Equations. Dekker, New York (1988)

    MATH  Google Scholar 

  12. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (1996)

    MATH  Google Scholar 

  13. Halley, W., Malham, S., Wiese, A.: Positive and implicit stochastic volatility simulation. arXiv:0802.4411v2 (2008)

  14. Higham, D.J.: Mean-square and asymptotic stability of the stochastic theta method. SIAM J. Numer. Anal. 38, 753–769 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kahl, C., Schurz, H.: Balanced Milstein methods for ordinary SDEs. Monte Carlo Methods Appl. 12(2), 143–170 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)

    MATH  Google Scholar 

  17. Kloeden, P.E., Platen, E., Schurz, H.: The numerical solution of nonlinear stochastic dynamical systems: A brief introduction. Int. J. Bifurc. Chaos 1, 277–286 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mao, X.: Stochastic Differential Equations and Applications. Horwood, New York (1997)

    MATH  Google Scholar 

  19. Milstein, G.N., Platen, E., Schurz, H.: Balanced implicit methods for stiff stochastic systems. SIAM J. Numer. Anal. 35, 1010–1019 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Milstein, G.N., Repin, Yu.M., Tretyakov, M.V.: Numerical methods for stochastic systems preserving symplectic structure. SIAM J. Numer. Anal. 40(4), 1583–1604 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Springer, Berlin (2004)

    MATH  Google Scholar 

  22. Omar, M.A., Aboul-Hassan, A., Rabia, S.I.: The composite Milstein methods for the numerical solution of Stratonovich stochastic differential equations. Appl. Math. Comput. 215, 727–745 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rodkina, A., Schurz, H.: Almost sure asymptotic stability of drift-implicit methods for bilinear ordinary stochastic differential equations in ℝ1. J. Comput. Appl. Math. 180, 13–31 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Saito, Y., Mitsui, T.: Stability analysis of numerical schemes for stochastic differential equations. SIAM J. Numer. Anal. 33, 2254–2267 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tian, T.H., Burrage, K.: Implicit Taylor methods for stiff stochastic differential equations. Appl. Numer. Math. 38, 167–185 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tian, T.H., Burrage, K.: Two-stage stochastic Runge-Kutta methods for stochastic differential equations. BIT 42, 625–643 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam (1992)

    Google Scholar 

  28. Wang, X., Gan, S.: Compensated stochastic theta methods for stochastic differential equations with jumps. Appl. Numer. Math. 60, 877–887 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wu, F., Mao, X., Szpruch, L.: Almost sure exponential stability of numerical solutions for stochastic delay differential equations. Numer. Math. 115(4), 681–697 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF of China (No. 11171352), Hunan Provincial Innovation Foundation For Postgraduate (No. CX2010B118), Singapore AcRF RG 59/08 (M52110092) and Singapore NRF 2007 IDM-IDM002-010. The first author would like to express his deep gratitude to Prof. P.E. Kloeden and Dr. A. Jentzen for their kind help and useful discussions during his stay in Goethe University of Frankfurt am Main.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siqing Gan.

Additional information

Communicated by Anders Szepessy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Gan, S. & Wang, D. A family of fully implicit Milstein methods for stiff stochastic differential equations with multiplicative noise. Bit Numer Math 52, 741–772 (2012). https://doi.org/10.1007/s10543-012-0370-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-012-0370-8

Keywords

Mathematics Subject Classification (2000)

Navigation