Exponential multistep methods of Adams-type


The paper is concerned with the construction, implementation and numerical analysis of exponential multistep methods. These methods are related to explicit Adams methods but, in contrast to the latter, make direct use of the exponential and related matrix functions of a (possibly rough) linearization of the vector field. This feature enables them to integrate stiff problems explicitly in time.

A stiff error analysis is performed in an abstract framework of linear semigroups that includes semilinear evolution equations and their spatial discretizations. A possible implementation of the proposed methods, including the computation of starting values and the evaluation of the arising matrix functions by Krylov subspace methods is discussed. Moreover, an interesting connection between exponential Adams methods and a class of local time stepping schemes is established.

Numerical examples that illustrate the methods’ properties are included.

This is a preview of subscription content, access via your institution.


  1. 1.

    Calvo, M.P., Palencia, C.: A class of explicit multistep exponential integrators for semilinear problems. Numer. Math. 102(3), 367–381 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Certaine, J.: The solution of ordinary differential equations with large time constants. In: Mathematical Methods for Digital Computers, pp. 128–132. Wiley, New York (1960)

    Google Scholar 

  3. 3.

    Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176(2), 430–455 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York (2000)

    MATH  Google Scholar 

  5. 5.

    Grote, M.: High-order explicit local time-stepping for damped wave equations. Talk at the GAMM Annual Meeting in Karlsruhe (2010)

  6. 6.

    Grote, M.J., Mitkova, T.: Explicit local time-stepping for transient electromagnetic waves. In: Proceedings of Waves 2009, pp. 70–71. INRIA (2009)

    Google Scholar 

  7. 7.

    Grote, M.J., Mitkova, T.: Explicit local time-stepping methods for Maxwell’s equations. J. Comput. Appl. Math. 234(12), 3283–3302 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems. Springer Series in Computational Mathematics, vol. 8, 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  9. 9.

    Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

    MATH  Google Scholar 

  10. 10.

    Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19(5), 1552–1574 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Hochbruck, M., Ostermann, A., Schweitzer, J.: Exponential Rosenbrock-type methods. SIAM J. Numer. Anal. 47(1), 786–803 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Lambert, J.D., Sigurdsson, S.T.: Multistep methods with variable matrix coefficients. SIAM J. Numer. Anal. 9(4), 715–733 (1972)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Nørsett, S.P.: An A-stable modification of the Adams-Bashforth methods. In: Conference on the Numerical Solution of Differential Equations. Lecture Notes in Mathematics, vol. 109, pp. 214–219. Springer, Berlin (1969)

    Google Scholar 

  15. 15.

    Ostermann, A., Thalhammer, M., Wright, W.M.: A class of explicit exponential general linear methods. BIT Numer. Math. 46(2), 409–431 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, 2nd edn. Applied Mathematical Sciences, vol. 44. Springer, Berlin (1992)

    Google Scholar 

  17. 17.

    Pope, D.A.: An exponential method of numerical integration of ordinary differential equations. Commun. ACM 6(8), 491–493 (1963)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Tokman, M.: Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods. J. Comput. Phys. 213(2), 748–776 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Verwer, J.: On generalized linear multistep methods with zero-parasitic roots and an adaptive principal root. Numer. Math. 27(2), 143–155 (1976)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Alexander Ostermann.

Additional information

Communicated by Christian Lubich.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hochbruck, M., Ostermann, A. Exponential multistep methods of Adams-type. Bit Numer Math 51, 889–908 (2011). https://doi.org/10.1007/s10543-011-0332-6

Download citation


  • Exponential integrators
  • Exponential Adams methods
  • Linearized exponential multistep methods
  • Evolution equations
  • Local time stepping

Mathematics Subject Classification (2000)

  • 65L20
  • 65L06
  • 65J10
  • 65M12