BIT Numerical Mathematics

, Volume 51, Issue 4, pp 889–908 | Cite as

Exponential multistep methods of Adams-type

  • Marlis Hochbruck
  • Alexander Ostermann


The paper is concerned with the construction, implementation and numerical analysis of exponential multistep methods. These methods are related to explicit Adams methods but, in contrast to the latter, make direct use of the exponential and related matrix functions of a (possibly rough) linearization of the vector field. This feature enables them to integrate stiff problems explicitly in time.

A stiff error analysis is performed in an abstract framework of linear semigroups that includes semilinear evolution equations and their spatial discretizations. A possible implementation of the proposed methods, including the computation of starting values and the evaluation of the arising matrix functions by Krylov subspace methods is discussed. Moreover, an interesting connection between exponential Adams methods and a class of local time stepping schemes is established.

Numerical examples that illustrate the methods’ properties are included.


Exponential integrators Exponential Adams methods Linearized exponential multistep methods Evolution equations Local time stepping 

Mathematics Subject Classification (2000)

65L20 65L06 65J10 65M12 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Calvo, M.P., Palencia, C.: A class of explicit multistep exponential integrators for semilinear problems. Numer. Math. 102(3), 367–381 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Certaine, J.: The solution of ordinary differential equations with large time constants. In: Mathematical Methods for Digital Computers, pp. 128–132. Wiley, New York (1960) Google Scholar
  3. 3.
    Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176(2), 430–455 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York (2000) zbMATHGoogle Scholar
  5. 5.
    Grote, M.: High-order explicit local time-stepping for damped wave equations. Talk at the GAMM Annual Meeting in Karlsruhe (2010) Google Scholar
  6. 6.
    Grote, M.J., Mitkova, T.: Explicit local time-stepping for transient electromagnetic waves. In: Proceedings of Waves 2009, pp. 70–71. INRIA (2009) Google Scholar
  7. 7.
    Grote, M.J., Mitkova, T.: Explicit local time-stepping methods for Maxwell’s equations. J. Comput. Appl. Math. 234(12), 3283–3302 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems. Springer Series in Computational Mathematics, vol. 8, 2nd edn. Springer, Berlin (1993) zbMATHGoogle Scholar
  9. 9.
    Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981) zbMATHGoogle Scholar
  10. 10.
    Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19(5), 1552–1574 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hochbruck, M., Ostermann, A., Schweitzer, J.: Exponential Rosenbrock-type methods. SIAM J. Numer. Anal. 47(1), 786–803 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Lambert, J.D., Sigurdsson, S.T.: Multistep methods with variable matrix coefficients. SIAM J. Numer. Anal. 9(4), 715–733 (1972) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Nørsett, S.P.: An A-stable modification of the Adams-Bashforth methods. In: Conference on the Numerical Solution of Differential Equations. Lecture Notes in Mathematics, vol. 109, pp. 214–219. Springer, Berlin (1969) CrossRefGoogle Scholar
  15. 15.
    Ostermann, A., Thalhammer, M., Wright, W.M.: A class of explicit exponential general linear methods. BIT Numer. Math. 46(2), 409–431 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, 2nd edn. Applied Mathematical Sciences, vol. 44. Springer, Berlin (1992) Google Scholar
  17. 17.
    Pope, D.A.: An exponential method of numerical integration of ordinary differential equations. Commun. ACM 6(8), 491–493 (1963) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Tokman, M.: Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods. J. Comput. Phys. 213(2), 748–776 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Verwer, J.: On generalized linear multistep methods with zero-parasitic roots and an adaptive principal root. Numer. Math. 27(2), 143–155 (1976) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institut für Angewandte und Numerische MathematikKarlsruher Institut für TechnologieKarlsruheGermany
  2. 2.Institut für MathematikUniversität InnsbruckInnsbruckAustria

Personalised recommendations