Skip to main content
Log in

High order local linearization methods: An approach for constructing A-stable explicit schemes for stochastic differential equations with additive noise

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

An approach for the construction of A-stable high order explicit strong schemes for stochastic differential equations (SDEs) with additive noise is proposed. We prove that such schemes also have the dynamical property that we call Random A-stability (RA-stability), which ensures that, for linear equations with stationary solutions, the numerical scheme has a random attractor that converges to the exact one as the step size decreases. Basically, the proposed integrators are obtained by splitting, at each time step, the solution of the original equation into two parts: the solution of a linear ordinary differential equation plus the solution of an auxiliary SDE. The first one is solved by the Local Linearization scheme in such a way that A-stability is guaranteed, while the second one is approximated by any extant scheme, preferably an explicit one that yields high order of convergence with low computational cost. Numerical integrators constructed in this way are called High Order Local Linearization (HOLL) methods. Various efficient HOLL schemes are elaborated in detail, and their performance is illustrated through computer simulations. Furthermore, mean-square convergence of the introduced methods is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, L.: Random Dynamical Systems. Springer-Verlag, Heidelberg (1998)

    MATH  Google Scholar 

  2. Artemiev, S.S., Averina, T.A.: Numerical analysis of systems of ordinary and stochastic differential equations. In: VSP (1997)

  3. Bensoussan, A., Glowinski, R., Rascanu, A.: Approximation of the Zakai equation by the splitting up method. SIAM J. Control Optim. 28, 1420–1431 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Biscay, R.J., Jimenez, J.C., Riera, J., Valdes, P.: Local linearization method for the numerical solution of stochastic differential equations. Ann. Inst. Stat. Math. 48, 631–644 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bokor, R.H.: On the stability for numerical approximations of stochastic ordinary differential equations. Electron. J. Qual. Theory Differ. Equ., Proc. 7th Coll. QTDE 15, 1–9 (2004) http://www.math.u-szeged.hu/ejqtde/. Accessed 24 June 2010

    Google Scholar 

  6. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods. Springer-Verlag, New York (1991)

    Book  Google Scholar 

  7. Brugnano, L., Burrage, K., Burrage, P.M.: Adams-type methods for the numerical solution of stochastic ordinary differential equations. BIT Numer. Math. 40, 451–470 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Burrage, K., Platen, E.: Runge-Kutta methods for stochastic differential equations. Ann. Numer. Math. 1, 63–78 (1994)

    MATH  MathSciNet  Google Scholar 

  9. Burrage, K., Burrage, P.M.: Order conditions of stochastic Runge–Kutta methods by B-series. SIAM J. Numer. Anal. 38, 1626–1646 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Burrage, K., Burrage, P.M., Tian, T.: Numerical methods for strong solutions of stochastic differential equations: an overview. Proc. R. Soc. Lond. Ser. A 460, 373–402 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Burrage, K., Tian, T.: Stiffly accurate Runge–Kutta methods for stiff stochastic differential equations. Comput. Phys. Commun. 142, 186–190 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chang, C.C.: Numerical solution of stochastic differential equations with constant diffusion coefficients. Math. Comput. 49, 523–542 (1987)

    MATH  Google Scholar 

  13. Carbonell, F., Jimenez, J.C., Biscay, R., de la Cruz, H.: The Local Linearization method for numerical integration of random differential equations. BIT Numer. Math. 45, 1–14 (2005)

    Article  MATH  Google Scholar 

  14. Carbonell, F., Jimenez, J.C., Biscay, R.J.: Weak local linear discretizations for stochastic differential equations: convergence and numerical schemes. J. Comput. Appl. Math. 197, 578–596 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. de la Cruz, H., Biscay, R.J., Carbonell, F., Jimenez, J.C., Ozaki, T.: Local linearization-Runge Kutta (LLRK) methods for solving ordinary differential equations. In: Lecture Notes in Computer Sciences, vol. 3991, pp. 132–139. Springer-Verlag, Berlin (2006)

    Google Scholar 

  16. de la Cruz, H., Biscay, R.J., Carbonell, F., Ozaki, T., Jimenez, J.C.: A higher order Local Linearization method for solving ordinary differential equations. Appl. Math. Comput. 185, 197–212 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Denk, G., Schaffler, S.: Adams methods for the solution of stochastic differential equations with additive noise. Computing 59, 153–161 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fogelson, A.L.: A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting. J. Comput. Phys. 50, 111–134 (1984)

    Article  MathSciNet  Google Scholar 

  19. Geman, S., Hwang, C.: Diffusions for global optimization. SIAM J. Control Optim. 24, 1031–1043 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gitterman, M.: The Noisy Oscillator. World Scientific, Singapore (2005)

    MATH  Google Scholar 

  21. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, 3th edn. Springer-Verlag, Berlin (1996)

    MATH  Google Scholar 

  22. Hansen, N.R.: Geometric ergodicity of discrete-time approximations to multivariate diffusions. Bernoulli 9, 725–743 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Higham, D.J., Mao, X., Stuart, A.M.: Strong convergence of Euler type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40, 1041–1063 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Higham, D.J., Mao, X., Yuan, C.: Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations. SIAM J. Numer. Anal. 45(2), 592–609 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Higham, D.J., Mao, X., Stuart, A.M.: Exponential mean square stability of numerical solutions to stochastic differential equations. Lond. Math. Soc. 6, 297–313 (2003)

    MATH  MathSciNet  Google Scholar 

  26. Hernandez, D.B., Spigler, R.: A-stability of Runge-Kutta methods for systems with additive noise. BIT Numer. Math. 32, 620–633 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hofmann, N., Müller-Gronbach, T., Ritter, K.: Stepsize control for the uniform approximation of systems of stochastic differential equations with additive noise. Ann. Appl. Probab. 10, 613–633 (2000)

    Google Scholar 

  28. Jimenez, J.C.: A simple algebraic expression to evaluate the Local Linearization schemes for stochastic differential equations. Appl. Math. Lett. 15, 775–780 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Jimenez, J.C., Biscay, R.J.: Approximation of continuous time stochastic processes by the local linearization method revisited. Stoch. Anal. Appl. 20, 105–121 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Jimenez, J.C., Biscay, R., Mora, C., Rodriguez, L.M.: Dynamic properties of the Local Linearization method for initial-value problems. Appl. Math. Comput. 131, 21–37 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Jimenez, J.C., Carbonell, F.: Rate of convergence of local linearization schemes for initial-value problems. Appl. Math. Comput. 171, 1282–1295 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Jimenez, J.C., Carbonell, F.: Local Linear approximations for jump diffusion processes. J. Appl. Probab. 43, 185–194 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Jimenez, J.C., Pedroso, L.M., Carbonell, F., Hernandez, V.: Local linearization method for numerical integration of delay differential equations. SIAM J. Numer. Anal. 44, 2584–2609 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Jimenez, J.C., Ozaki, T.: Local Linearization filters for non-linear continuous-discrete state space models with multiplicative noise. Int. J. Control 76, 1159–1170 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Jimenez, J.C., Ozaki, T.: An approximate innovation method for the estimation of diffusion processes from discrete data. J. Time Ser. Anal. 27, 77–97 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Jimenez, J.C., Shoji, I., Ozaki, T.: Simulation of stochastic differential equations through of the Local Linearization method. A comparative study. J. Stat. Phys. 94, 587–602 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  37. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations, 3rd edn. Springer-Verlag, Berlin (1999)

    Google Scholar 

  38. Kloeden, P.E., Keller, H., Schmalfuss, B.: Toward a Theory of Random Dynamical Systems. Stochastic Dynamics. Springer-Verlag, Berlin (1999)

    Google Scholar 

  39. Mattingly, J.C., Stuart, A.M., Higham, D.J.: Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stoch. Process. Appl. 101, 185–232 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  40. Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Springer, Berlin (2004)

    MATH  Google Scholar 

  41. Milstein, G.N.: Numerical Integration of Stochastic Differential Equations. Kluwer Academic, Norwell (1995)

    Google Scholar 

  42. Misawa, T.: A Lie algebraic approach to numerical integration of stochastic differential equations. SIAM J. Sci. Comput. 23, 866–890 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  43. Moler, C., Van Loan, C.F.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45, 3–49 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  44. Ochs, G.: Weak random attractors. Report Nr. 449, Institut fur Dynamische Systeme, 1999

  45. Ozaki, T.: A bridge between nonlinear time series models and nonlinear stochastic dynamical systems: a local linearization approach. Stat. Sin. 2, 113–135 (1992)

    MATH  MathSciNet  Google Scholar 

  46. Ozaki, T.: A local linearization approach to nonlinear filtering. Int. J. Control 57, 75–96 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  47. Petersen, W.P.: A general implicit splitting for stabilizing numerical simulations of Itô stochastic differential equations. SIAM J. Numer. Anal. 35, 1439–1451 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  48. Riera, J.J., Wan, X., Jimenez, J.C., Kawashima, R.: Nonlinear local electro-vascular coupling. Part I: A theoretical model. Hum. Brain Mapp. 27, 896–914 (2006)

    Article  Google Scholar 

  49. Robinson, J.C.: Stability of random attractors under perturbation and approximation. J. Differ. Equ. 186, 652–669 (2002)

    Article  MATH  Google Scholar 

  50. Saito, Y., Mitsui, T.: Stability analysis of numerical schemes for stochastic differential equations. SIAM J. Numer. Anal. 33, 2254–2267 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  51. Schurz, H.: The invariance of asymptotic laws of linear stochastic systems under discretization. Z. Angew. Math. Mech. 79, 375–382 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  52. Shurz, H.: Numerical Analysis of Stochastic Differential Equations Without Tears. Handbook of Stochastic Analysis and its Applications. Marcel Dekker, New York (2002)

    Google Scholar 

  53. Schurz, H., Schneider, K.R.: Waveform relaxation methods for ordinary stochastic differential equations. Int. J. Numer. Anal. Model. 3, 232–254 (2006)

    MATH  MathSciNet  Google Scholar 

  54. Shoji, I.: Approximation of continuous time stochastic processes by a local linearization method. Math. Comput. 67, 287–298 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  55. Sidje, R.B.: EXPOKIT: software package for computing matrix exponentials. ACM Trans. Math. Softw. 24, 130–156 (1998)

    Article  MATH  Google Scholar 

  56. Talay, D.: Second order discretization schemes of stochastic differential systems for the computation of the invariant law. Stoch. Stoch. Rep. 29, 13–36 (1990)

    MATH  Google Scholar 

  57. Valdes, P.A., Jimenez, J.C., Riera, J., Biscay, R., Ozaki, T.: Nonlinear EEG analysis based on a neural mass model. Biol. Cybern. 81, 415–424 (1999)

    Article  MATH  Google Scholar 

  58. Veuthey, A.L., Stucki, J.: The adenylate kinase reaction acts as a frequency filter towards fluctuations of ATP utilization in the cell. Biophys. Chem. 26, 19–28 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. De la Cruz Cancino.

Additional information

Communicated by Anders Szepessy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De la Cruz Cancino, H., Biscay, R.J., Jimenez, J.C. et al. High order local linearization methods: An approach for constructing A-stable explicit schemes for stochastic differential equations with additive noise. Bit Numer Math 50, 509–539 (2010). https://doi.org/10.1007/s10543-010-0272-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-010-0272-6

Keywords

Mathematics Subject Classification (2000)

Navigation