Skip to main content
Log in

Projection methods preserving Lyapunov functions

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper we consider ordinary differential equations with a known Lyapunov function. We study the use of Runge–Kutta methods provided with a dense output and a projection technique to preserve any given Lyapunov function. This approach extends previous work of Grimm and Quispel (BIT 45, 2005), allowing the use of Runge–Kutta methods for which the associated quadrature formula does not need to have positive or zero coefficients. Some numerical experiments show the good performance of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogacki, P., Shampine, L.F.: A 3(2) pair of Runge–Kutta formulas. Appl. Math. Lett. 2(4), 321–325 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Budd, C.J., Iserles, A. (eds.): Geometric integration: numerical solution of differential equations on manifolds. Special edition of Philos. Trans. R. Soc. Lond. 357 (1999)

  3. Budd, C.J., Piggott, M.D.: Geometric integration and its applications. In: Proceedings of ECMWF Workshop on “Developments in Numerical Methods for Very High Resolution Global Models”, pp. 93–118 (2000)

  4. Calvo, M., Hernández-Abreu, D., Montijano, J.I., Rández, L.: On the preservation of invariants by explicit Runge–Kutta methods. SIAM J. Sci. Comput. 28(3), 868–885 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Calvo, M., Montijano, J.I., Rández, L.: A new embedded pair of Runge–Kutta formulas of order 5 and 6. Comput. Math. Appl. 20(1), 15–24 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dormand, J.R., Prince, P.J.: A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  7. Elliot, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30, 1622–1663 (1993)

    Article  MathSciNet  Google Scholar 

  8. Enright, W.H., Jackson, K.R., Nørsett, S.P., Thomsen, P.G.: Interpolants for Runge–Kutta formulas. ACM Trans. Math. Softw. 12(3), 193–218 (1986)

    Article  MATH  Google Scholar 

  9. Grimm, V., Quispel, G.R.W.: Geometric integration methods that preserve Lyapunov functions. BIT Numer. Math. 45, 709–723 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    MATH  Google Scholar 

  11. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2002)

    MATH  Google Scholar 

  12. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  13. Higham, D.J.: The tolerance proportionality of adaptive ODE solvers. J. Comput. Appl. Math. 45, 227–236 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lakshmikantham, V., Matrosov, V.M., Sivasundaram, S.: Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems. Kluwer, Dordrecht (1991)

    MATH  Google Scholar 

  15. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  16. McLachlan, R.I., Quispel, G.R.W.: Six lectures on the geometric integration of ODEs. In: DeVore, R.A., et al. (eds.) Foundations of Computational Mathematics, pp. 155–210. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  17. McLachlan, R.I., Quispel, G.R.W.: Splitting methods. Acta Numer. 11, 341–434 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. McLachlan, R.I., Quispel, G.R.W.: Geometric integrators for ODEs. J. Phys. A 39(19), 5251–5285 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: A unified approach to Hamiltonian systems, Poisson systems, gradient systems and systems with a Lyapunov function and/or first integrals. Phys. Rev. Lett. 81, 2399–2403 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. Lond. A 357, 1021–1045 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Owren, B., Zennaro, M.: Derivation of efficient, continuous, explicit Runge–Kutta methods. SIAM J. Sci. Comput. 13, 1488–1501 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rouche, N., Habets, P., Laloy, M.: Stability Theory by Liapunov’s Direct Method. Applied Mathematical Sciences, vol. 22. Springer, New York (1977)

    MATH  Google Scholar 

  23. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems, Applied Mathematics and Mathematical Computation, vol. 7. Chapman & Hall, London (1994)

    MATH  Google Scholar 

  24. Shampine, L.F.: Interpolation for Runge–Kutta formulas. SIAM J. Numer. Anal. 22, 1014–1027 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Stuart, A.M., Humphries, A.R.: Dynamical Systems and Numerical Analysis. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Laburta.

Additional information

Communicated by Christian Lubich.

This work was supported by D.G.I. project MTM2007-67530-C02-01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvo, M., Laburta, M.P., Montijano, J.I. et al. Projection methods preserving Lyapunov functions. Bit Numer Math 50, 223–241 (2010). https://doi.org/10.1007/s10543-010-0259-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-010-0259-3

Keywords

Mathematics Subject Classification (2000)

Navigation