Skip to main content
Log in

Grassmann algorithms for low rank approximation of matrices with missing values

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The problem of approximating a matrix by another matrix of lower rank, when a modest portion of its elements are missing, is considered. The solution is obtained using Newton’s algorithm to find a zero of a vector field on a product manifold. As a preliminary the algorithm is formulated for the well-known case with no missing elements where also a rederivation of the correction equation in a block Jacobi-Davidson method is included. Numerical examples show that the Newton algorithm grows more efficient than an alternating least squares procedure as the amount of missing values increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abadir, K., Magnus, J.: Matrix Algebra. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  2. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  3. Absil, P.-A., Ishteva, M., De Lathauwer, L., Van Huffel, S.: A geometric Newton method for Oja’s vector field. Neural Comput. 21(5), 1415–1433 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.): Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  5. Deuflhard, P.: Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms. Springer, Berlin (2004)

    MATH  Google Scholar 

  6. do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992)

    MATH  Google Scholar 

  7. Eckart, G., Young, G.: The approximation of one matrix by another of lower rank. Psychometrica 1, 211–218 (1936)

    Article  Google Scholar 

  8. Edelman, A., Arias, T., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20, 303–353 (1999)

    Article  MathSciNet  Google Scholar 

  9. Geus, R.: The Jacobi-Davidson algorithm for solving large sparse symmetric eigenvalue problems with applications to the design of accelerator cavities. PhD Thesis, ETH Zurich (2002)

  10. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  11. Grung, B., Manne, R.: Missing values in principal component analysis. Chemom. Intell. Lab. Syst. 42, 125–139 (1998)

    Article  Google Scholar 

  12. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, Berlin (2001)

    MATH  Google Scholar 

  13. Helmke, U., Moore, J.B.: Optimization and Dynamical Systems. Springer, London (1994)

    Google Scholar 

  14. Hochstenbach, M.: A Jacobi-Davidson type SVD method. SIAM J. Sci. Comput. 23, 606–628 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  16. Lundström, E., Eldén, L.: Adaptive eigenvalue computations using Newton’s method on the Grassmann manifold. SIAM J. Matrix Anal. Appl. 23, 819–839 (2002)

    Article  MATH  Google Scholar 

  17. Manton, J.H.: Optimization algorithms exploiting unitary constraints. IEEE Trans. Signal Process. 50, 635–650 (2002)

    Article  MathSciNet  Google Scholar 

  18. Manton, J.H., Mahony, R., Hua, Y.: The geometry of weighted low-rank approximations. IEEE Trans. Signal Process. 51, 500–514 (2003)

    Article  MathSciNet  Google Scholar 

  19. Ruhe, A.: Numerical computation of principal components when several observations are missing, Tech. report, UMINF-48, Umeå (1974)

  20. Simonsson, L.: Subspace computations via matrix decompositions and geometric optimization. PhD Thesis, Department of Mathematics, Linköping University (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Eldén.

Additional information

Communicated by Haesun Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonsson, L., Eldén, L. Grassmann algorithms for low rank approximation of matrices with missing values. Bit Numer Math 50, 173–191 (2010). https://doi.org/10.1007/s10543-010-0253-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-010-0253-9

Keywords

Mathematics Subject Classification (2000)

Navigation