Abstract
Regularization techniques based on the Golub-Kahan iterative bidiagonalization belong among popular approaches for solving large ill-posed problems. First, the original problem is projected onto a lower dimensional subspace using the bidiagonalization algorithm, which by itself represents a form of regularization by projection. The projected problem, however, inherits a part of the ill-posedness of the original problem, and therefore some form of inner regularization must be applied. Stopping criteria for the whole process are then based on the regularization of the projected (small) problem.
In this paper we consider an ill-posed problem with a noisy right-hand side (observation vector), where the noise level is unknown. We show how the information from the Golub-Kahan iterative bidiagonalization can be used for estimating the noise level. Such information can be useful for constructing efficient stopping criteria in solving ill-posed problems.
This is a preview of subscription content, access via your institution.
References
Björck, Å.: A bidiagonalization algorithm for solving large sparse ill-posed systems of linear equations. BIT 28, 659–670 (1988)
Björck, Å., Grimme, E., Van Dooren, P.: An implicit shift bidiagonalization algorithm for ill-posed systems. BIT 34, 510–534 (1994)
Barlow, J.L., Bosner, N., Drmač, Z.: A new stable bidiagonal reduction algorithm. Linear Algebra Appl. 397, 35–84 (2005)
Calvetti, D., Golub, G.H., Reichel, L.: Estimation of the L-curve via Lanczos bidiagonalization. BIT 39, 603–619 (1999)
Calvetti, D., Morigi, S., Reichel, L., Sgallari, F.: Tikhonov regularization and the L-curve for large discrete ill-posed problems. J. Comput. Appl. Math. 123, 423–446 (2000)
Calvetti, D., Reichel, L., Shuibi, A.: L-curve and curvature bounds for Tikhonov regularization. Numer. Algorithms 35, 301–314 (2004)
Chung, J., Nagy, J.G., O’Leary, D.P.: A weighted GCV method for Lanczos hybrid regularization. Electron. Trans. Numer. Anal. 28, 149–167 (2008)
Cooley, J.W., Tukey, J.W.: An algorithm for the machine computation of the complex Fourier series. Math. Comput. 19, 297–301 (1965)
Duhamel, P., Vetterli, M.: Fast Fourier transforms: A tutorial review and a state of the art. Signal Process. 19, 259–299 (1990)
Fierro, R.D., Golub, G.H., Hansen, P.C., O’Leary, D.P.: Regularization by truncated total least squares. SIAM J. Sci. Statist. Comput. 18, 1225–1241 (1997)
Fischer, B.: Polynomial Based Iteration Methods for Symmetric Linear Systems. Wiley-Teubner Series Advances in Numerical Mathematics. Wiley, New York (1996)
Fischer, B., Freund, R.W.: On adaptive weighted polynomial preconditioning for Hermitian positive definite matrices. SIAM J. Sci. Comput. 15, 408–426 (1994)
Gautschi, W.: Gauss-Christoffel Quadrature Formulae. In: E.B. Christoffel, Aachen/Monschau, 1979, pp. 72–147. Birkhäuser, Basel (1981)
Golub, G.H., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer. Anal. Ser. B 2, 205–224 (1965)
Golub, G.H., Von Matt, U.: Generalized cross-validation for large scale problems. J. Comput. Graph. Stat. 6, 1–34 (1997)
Hanke, M.: On Lanczos based methods for regularization of discrete ill-posed problems. BIT 41, 1008–1018 (2001)
Hansen, P.C.: Regularization Tools—version 3.2 for MATLAB 6.0, a package for analysis and solution of discrete ill-posed problems, http://www2.imm.dtu.dk/~pch/Regutools/index.html
Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems, Numerical Aspects of Linear Inversion. SIAM, Philadelphia (1998)
Hansen, P.C., Jensen, T.K.: Noise propagation in regularizing iterations for image deblurring. ETNA 31, 204–220 (2008)
Hansen, P.C., Kilmer, M.E., Kjeldsen, R.: Exploiting residual information in the parameter choice for discrete ill-posed problems. BIT 46, 41–59 (2006)
Hansen, P.C., Sørensen, H.O., Sükösd, Z., Poulsen, H.F.: Reconstruction of single-grain orientation distribution functions for crystalline materials. SIAM J. Image Sci. 2(2), 593–613 (2009)
Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49, 409–435 (1952)
Hnětynková, I., Strakoš, Z.: Lanczos tridiagonalization and core problems. Linear Algebra Appl. 421, 243–251 (2007)
Hnětynková, I., Plešinger, M., Strakoš, Z.: Lanczos tridiagonalization, Golub-Kahan bidiagonalization and core problem. PAMM 6, 717–718 (2006)
Jensen, T.K., Hansen, P.C.: Iterative regularization with minimum-residual methods. BIT 47, 103–120 (2007)
Karlin, S., Shapley, L.S.: Geometry of Moment Spaces. American Mathematical Society, Providence (1953)
Kilmer, M.E., O’Leary, D.P.: Choosing regularization parameters in iterative methods for ill-posed problems. SIAM J. Matrix Anal. Appl. 22, 1204–1221 (2001)
Kilmer, M.E., Hansen, P.C., Español, M.I.: A projection-based approach to general form Tikhonov regularization. SIAM J. Sci. Comput. 29, 315–330 (2006)
Lanczos, C.: Linear Differential Operators. Van Nostrand, London (1961)
Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Stand. 45, 255–282 (1950)
Meurant, G., Strakoš, Z.: The Lanczos and conjugate gradient algorithms in finite precision arithmetic. Acta Numer. 15, 471–542 (2006)
Morozov, V.A.: On the solution of functional equations by the method of regularization (in Russian). Sov. Math. Dokl. 7, 414–417 (1966)
Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer, New York (1984)
Nguyen, N., Milanfar, P., Golub, G.H.: Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement. IEEE Trans. Image Proces. 10, 1299–1308 (2001)
O’Leary, D.P.: Near-optimal parameters for Tikhonov and other regularization methods. SIAM J. Sci. Comput. 23, 1161–1171 (2001)
O’Leary, D.P., Simmons, J.A.: A bidiagonalization-regularization procedure for large scale discretizations of ill-posed problems. SIAM J. Sci. Stat. Comput. 2, 474–489 (1981)
O’Leary, D.P., Strakoš, Z., Tichý, P.: On sensitivity of Gauss-Christoffel quadrature. Numer. Math. 107, 147–174 (2007)
Paige, C.C.: Bidiagonalization of matrices and solution of linear equations. SIAM J. Numer. Anal. 11, 197–209 (1974)
Paige, C.C.: Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem. Linear Algebra Appl. 34, 235–258 (1980)
Paige, C.C.: A useful form of unitary matrix obtained from any sequence of unit 2-norm n-vectors. SIAM J. Matrix Anal. Appl. 31, 565–583 (2009)
Paige, C.C., Saunders, M.A.: LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8, 43–71 (1982)
Paige, C.C., Saunders, M.A.: ALGORITHM 583 LSQR: Sparse Linear equations and least squares problems. ACM Trans. Math. Softw. 8, 195–209 (1982)
Paige, C.C., Strakoš, Z.: Scaled total least squares fundamentals. Numer. Math. 91, 117–146 (2002)
Paige, C.C., Strakoš, Z.: Unifying least squares, total least squares and data least squares. In: Van Huffel, S., Lemmerling, P. (eds.) Total Least Squares and Errors-in-Variables Modeling, pp. 25–34. Kluwer Academic, Dordrecht (2002)
Paige, C.C., Strakoš, Z.: Core problem in linear algebraic systems. SIAM J. Matrix Anal. Appl. 27, 861–875 (2006)
Rust, B.W.: Parameter selection for constrained solutions to ill-posed problems. Comput. Sci. Stat. 32, 333–347 (2000)
Rust, B.W., O’Leary, D.P.: Residual periodograms for choosing regularization parameters for ill-posed problems. Inverse Probl. 24 (2008). doi:10.1088/0266-5611/24/3/034005
Saunders, M.A.: Computing projections with LSQR. BIT 37, 96–104 (1997)
Sima, D.M., Van Huffel, S.: Using core formulations for ill-posed linear systems. PAMM 5, 795–796 (2005)
Sima, D.M.: Regularization techniques in model fitting and parameter estimation. Ph.D. thesis, Dept. of Electrical Engineering, Katholieke Universiteit Leuven (2006)
Simon, H.D., Zha, H.: Low-rank matrix approximation using the Lanczos bidiagonalization process with applications. SIAM J. Sci. Stat. Comput. 21, 2257–2274 (2000)
Strakoš, Z.: Model reduction using the Vorobyev moment problem. Numer. Algorithms 51, 363–376 (2009)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Lars Eldén.
The work of the first author was supported by the research project MSM0021620839 financed by MŠMT. The work of the second and the third author was supported by the GAAS grant IAA100300802, and by the Institutional Research Plan AV0Z10300504.
Rights and permissions
About this article
Cite this article
Hnětynková, I., Plešinger, M. & Strakoš, Z. The regularizing effect of the Golub-Kahan iterative bidiagonalization and revealing the noise level in the data. Bit Numer Math 49, 669–696 (2009). https://doi.org/10.1007/s10543-009-0239-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10543-009-0239-7
Keywords
- Ill-posed problems
- Golub-Kahan iterative bidiagonalization
- Lanczos tridiagonalization
- Noise revealing
Mathematics Subject Classification (2000)
- 15A06
- 15A18
- 15A23
- 65F10
- 65F22