Abstract
The paper derives improved relative perturbation bounds for the eigenvalues of scaled diagonally dominant Hermitian matrices and new relative perturbation bounds for the singular values of symmetrically scaled diagonally dominant square matrices. The perturbation result for the singular values enlarges the class of well-behaved matrices for accurate computation of the singular values.
This is a preview of subscription content, access via your institution.
References
J. Barlow and J. Demmel, Computing accurate eigensystems of scaled diagonally dominant matrices, SIAM J. Numer. Anal., 27 (1990), pp. 762–791.
J. Demmel and K. Veselić, Jacobi’s method is more accurate than QR, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 1204–1245.
J. Demmel, M. Gu, S. Eisenstat, I. Slapničar, K. Veselić, and Z. Drmač, Computing the singular value decomposition with high relative accuracy, Linear Algebra Appl., 299 (1999), pp. 21–80, also LAPACK Working Note 119.
F. M. Dopico, J. M. Molera, and J. Moro, An orthogonal high relative accuracy algorithm for the symmetric eigenproblem, SIAM J. Matrix Anal. Appl., 25(2) (2004), pp. 301–351.
Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm I, SIAM J. Matrix Anal. Appl., 29(4) (2008), pp. 1322–1342.
Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm II, SIAM J. Matrix Anal. Appl., 29(4) (2008), pp. 1343–1362.
G. H. Golub and C. F. van Loan, Matrix Computations, 3rd edn., The Johns Hopkins University Press, Baltimore, 1996.
V. Hari, Structure of almost diagonal matrices, Math. Commun., 4 (1999), pp. 135–158.
V. Hari and Z. Drmač, On scaled almost diagonal Hermitian matrix pairs, SIAM J. Matrix Anal. Appl., 18(4) (1997), pp. 1000–1012.
V. Hari and J. Matejaš, Quadratic convergence of scaled iterates by Kogbetliantz method, Comput. Suppl., 16 (2003), pp. 83–105.
V. Hari and J. Matejaš, Accuracy of two SVD algorithms for 2×2 triangular matrices, proposed for publication in Appl. Math. Comput.
R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1987.
I. Ipsen, Relative perturbation results for matrix eigenvalues and singular values, Acta Numerica, 8 (1998), pp. 151–201.
T. Londre and N. H. Rhee, Numerical stability of the parallel Jacobi method, SIAM J. Matrix Anal. Appl., 26(4) (2005), pp. 985–1000.
J. Matejaš, Quadratic convergence of scaled matrices in Jacobi method, Numer. Math., 87(1) (2000), pp. 171–199.
J. Matejaš, Convergence of scaled iterates by the Jacobi method, Linear Algebra Appl., 349 (2002), pp. 17–53.
J. Matejaš, Accuracy of the Jacobi method on scaled diagonally dominant symmetric matrices, to appear in SIAM J. Matrix Anal. Appl.
J. Matejaš and V. Hari, Scaled almost diagonal matrices with multiple singular values, Z. Angew. Math. Mech., 78(2) (1998), pp. 121–131.
J. Matejaš and V. Hari, Scaled iterates by Kogbetliantz method, in Proceedings of the 1st Conference on Applied Mathematics and Computations (Dubrovnik, Croatia, September 13–18, 1999), Publisher Dept. of Mathematics, University of Zagreb, 2001, pp. 1–20.
J. Matejaš and V. Hari, Quadratic convergence estimate of scaled iterates by J-symmetric Jacobi method, Linear Algebra Appl., 417 (2006), pp. 434–465.
F. D. Murnaghan and A. Wintner, A canonical form for real matrices under orthogonal transformations, Proc. Natl. Acad. Sci. USA, 17 (1931), pp. 417–420.
B. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall, Englewood Cliffs, NJ, 1980.
A. Ruhe, On the quadratic convergence of the Jacobi method for normal matrices, BIT, 7 (1967), pp. 305–313.
I. Slapničar, Accurate Symmetric Eigenreduction by a Jacobi Method, Ph.D. thesis, University of Hagen, 1992.
I. Slapničar, Accurate computation of singular values and eigenvalues of symmetric matrices, Math. Commun., 1(2) (1996), pp. 153–168.
K. Veselić, An eigenreduction algorithm for definite matrix pairs and its applications to overdamped linear systems, Numer. Math., 64 (1993), pp. 241–269.
K. Veselić and I. Slapničar, Floating-point perturbations of Hermitian matrices, Linear Algebra Appl., 195 (1993), pp. 81–116.
Author information
Authors and Affiliations
Corresponding author
Additional information
AMS subject classification (2000)
65F15
Rights and permissions
About this article
Cite this article
Matejaš, J., Hari, V. Relative eigenvalue and singular value perturbations of scaled diagonally dominant matrices . Bit Numer Math 48, 769–781 (2008). https://doi.org/10.1007/s10543-008-0200-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10543-008-0200-1
Key words
- Hermitian matrix, eigenvalues, scaled diagonally dominant matrix, singular values, symmetric scaling, relative perturbations