Skip to main content
Log in

Three-scale finite element eigenvalue discretizations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Some three-scale finite element discretization schemes are proposed and analyzed in this paper for a class of elliptic eigenvalue problems on tensor product domains. With these schemes, the solution of an eigenvalue problem on a fine grid may be reduced to the solutions of eigenvalue problems on a relatively coarse grid and some partially mesoscopic grids, together with the solutions of linear algebraic systems on a globally mesoscopic grid and several partially fine grids. It is shown theoretically and numerically that this type of discretization schemes not only significantly reduce the number of degrees of freedom but also produce very accurate approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Babuska and J. E. Osborn, Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comput., 52 (1989), pp. 275–297.

    Article  MATH  MathSciNet  Google Scholar 

  2. I. Babuska and J. E. Osborn, Eigenvalue problems, in Handbook of Numerical Analysis, Finite Element Methods (Part 1), vol. II, P. G. Ciarlet and J. L. Lions, eds., Elsevier, North-Holland, Amsterdam, 1991, pp. 641–792.

    Google Scholar 

  3. R. E. Bank, Hierarchical bases and the finite element method, Acta Numer., 5 (1996), pp. 1–43.

    MathSciNet  Google Scholar 

  4. A. Brandt, S. McCormick, and J. Ruge, Multigrid methods for differential eigenproblems, SIAM J. Sci. Stat. Comput., 4 (1983), pp. 244–260.

    Article  MATH  MathSciNet  Google Scholar 

  5. H. J. Bungartz and M. Griebel, Sparse grids, Acta Numer., 13 (2004), pp. 1–123.

    MathSciNet  Google Scholar 

  6. H. J. Bungartz, M. Griebel, and U. Rüde, Extrapolation, combination, and sparse grid techniques for elliptic boundary value problems, Comput. Methods Appl. Mech. Eng., 116 (1994), pp. 243–252.

    Article  MATH  Google Scholar 

  7. Z. Cai, J. Mandel, and S. McCormick, Multigrid methods for nearly singular linear equations and eigenvalue problems, SIAM J. Numer. Anal., 34 (1997), pp. 178–200.

    Article  MATH  MathSciNet  Google Scholar 

  8. T. F. Chan and I. Sharapov, Subspace correction multi-level methods for elliptic eigenvalue problems, Numer. Linear Algebra Appl., 9 (2002), pp. 1–20.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.

    Book  MATH  Google Scholar 

  10. S. Costiner and S. Ta’asan, Adaptive multigrid techniques for large-scale eigenvalue problems: Solutions of the Schrödinger problem in two and three dimensions, Phys. Rev. E, 51 (1995), pp. 3704.

    Article  MathSciNet  Google Scholar 

  11. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 3rd edn., Springer, Berlin, Heidelberg, 2001.

    MATH  Google Scholar 

  12. M. Griebel, M. Schneider, and C. Zenger, A combination technique for the solution of sparse grid problem, in Iterative Methods in Linear Algebra, P. de Groen and P. Beauwens, eds., IMACS, Elsevier, North Holland, Amsterdam, 1992, pp. 263–281.

    Google Scholar 

  13. W. Hackbusch, Multigrid Methods and Applications, Springer, New York, 1985.

    Google Scholar 

  14. W. Hackbusch, Elliptic Differential Equations: Theory and Numerical Treatment, Springer, Berlin, Heidelberg, 1992.

    MATH  Google Scholar 

  15. J. P. Hennart and E. H. Mund, On the h- and p-versions of the extrapolated Gordon’s projector with applications to elliptic equations, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 773–791.

    Article  MATH  MathSciNet  Google Scholar 

  16. X. Liao and A. Zhou, A multi-parameter splitting extrapolation and a parallel algorithm for elliptic eigenvalue problems, J. Comput. Math., 16 (1998), pp. 213–220.

    MATH  MathSciNet  Google Scholar 

  17. Q. Lin and J. Lin, Finite Element Methods: Accuracy and Improvement, Science Press, Beijing, 2006.

    Google Scholar 

  18. Q. Lin, N. N. Yan, and A. Zhou, A sparse finite element method with high accuracy, Part I, Numer. Math., 88 (2001), pp. 731–742.

    Article  MATH  MathSciNet  Google Scholar 

  19. F. Liu and A. Zhou, Two-scale finite element discretizations for partial differential equations, J. Comput. Math., 24 (2006), pp. 373–392.

    MATH  MathSciNet  Google Scholar 

  20. F. Liu and A. Zhou, Localizations and parallelizations for two-scale finite element discretizations, Commun. Pure Appl. Anal., 6 (2007), pp. 757–773.

    MATH  MathSciNet  Google Scholar 

  21. F. Liu and A. Zhou, Two-scale Boolean Galerkin discretizations for Fredholm integral equations of the second kind, SIAM J. Numer. Anal., 45 (2007), pp. 296–312.

    MATH  MathSciNet  Google Scholar 

  22. J. Mandel, and S. McCormick, A multilevel variational method for Au=λBu on composite grids, J. Comput. Phys., 80 (1989), pp. 442–452.

    Article  MATH  MathSciNet  Google Scholar 

  23. S. McCormick, Multilevel adaptive methods for elliptic eigenproblems: A two-level convergence theory, SIAM J. Numer. Anal., 6 (1994), pp. 1731–1745.

    Article  MathSciNet  Google Scholar 

  24. C. Pflaum, Convergence of the combination technique for second-order elliptic differential equations, SIAM J. Numer. Anal., 34 (1997), pp. 2431–2455.

    Article  MATH  MathSciNet  Google Scholar 

  25. C. Pflaum and A. Zhou, Error analysis of the combination technique, Numer. Math., 84 (1999), pp. 327–350.

    Article  MATH  MathSciNet  Google Scholar 

  26. L. Strakhovskaya, An iterative method for evaluating the first eigenvalue of an elliptic operator, USSR Comput. Math. Math. Phys., 17 (1977), pp. 88–101.

    Article  Google Scholar 

  27. L. B. Wahlbin, Superconvergence in Galerkin Finite Element Methods, Lect. Notes Math., vol. 1605, Springer, Berlin, 1995.

    MATH  Google Scholar 

  28. J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33 (1996), pp. 1759–1777.

    Article  MATH  MathSciNet  Google Scholar 

  29. J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid discretizations, Math. Comput., 69 (2000), pp. 881–909.

    MATH  MathSciNet  Google Scholar 

  30. J. Xu and A. Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comput., 70 (2001), pp. 17–25.

    MATH  MathSciNet  Google Scholar 

  31. Y. Xu and A. Zhou, Fast Boolean approximation methods for solving integral equations in high dimensions, J. Integral Equations Appl., 16 (2004), pp. 83–110.

    Article  MATH  MathSciNet  Google Scholar 

  32. H. Yserentant, Old and new convergence proofs for multigrid methods, Acta Numer., 2 (1993), pp. 285–326.

    Article  MathSciNet  Google Scholar 

  33. C. Zenger, Sparse grids, in Parallel Algorithm for Partial Differential Equations, Proc. of 6th GAMM-Seminar, W. Hackbush, ed., Vieweg, Braunschweig, 1991.

  34. A. Zhou and J. Li, The full approximation accuracy for the stream function-vorticity-pressure method, Numer. Math., 68 (1994), pp. 427–435.

    Article  MATH  MathSciNet  Google Scholar 

  35. A. Zhou, C. Liem, T. Shih, and T. Lu, A multi-parameter splitting extrapolation and a parallel algorithm, Syst. Sci. Math. Sci., 10 (1997), pp. 253–260.

    MATH  MathSciNet  Google Scholar 

  36. A. Zhou, C. Liem, T. Shih, and T. Lu, Error analysis on bi-parameter finite elements, Comput. Methods Appl. Mech. Eng., 158 (1998), pp. 329–339.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zhou.

Additional information

AMS subject classification (2000)

65N15, 65N25, 65N30, 65N50

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, X., Liu, F. & Zhou, A. Three-scale finite element eigenvalue discretizations . Bit Numer Math 48, 533–562 (2008). https://doi.org/10.1007/s10543-008-0189-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-008-0189-5

Key words

Navigation