Sparse grids and hybrid methods for the chemical master equation

Article

Abstract

The direct numerical solution of the chemical master equation (CME) is usually impossible due to the high dimension of the computational domain. The standard method for solution of the equation is to generate realizations of the chemical system by the stochastic simulation algorithm (SSA) by Gillespie and then taking averages over the trajectories. Two alternatives are described here using sparse grids and a hybrid method. Sparse grids, implemented as a combination of aggregated grids are used to address the curse of dimensionality of the CME. The aggregated components are selected using an adaptive procedure. In the hybrid method, some of the chemical species are represented macroscopically while the remaining species are simulated with SSA. The convergence of variants of the method is investigated for a growing number of trajectories. Two signaling cascades in molecular biology are simulated with the methods and compared to SSA results.

Key words

stochastic chemical kinetics master equation sparse grids hybrid method 

References

  1. 1.
    D. Adalsteinsson, D. McMillen, and T. E. Elston, Biochemical Network Stochastic Simulator (BioNetS): software for stochastic modeling of biochemical networks, BMC Bioinform., 5 (2004), 24.Google Scholar
  2. 2.
    D. F. Anderson, Incorporating postleap checks in tau-leaping, J. Chem. Phys., 128 (2008), 054103.Google Scholar
  3. 3.
    A. Arkin, J. Ross, and H. H. McAdams, Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells, Genetics, 149 (1998), pp. 1633–1648.Google Scholar
  4. 4.
    N. Barkai and S. Leibler, Circadian clocks limited by noise, Nature, 403 (2000), pp. 267–268.Google Scholar
  5. 5.
    H.-J. Bungartz and M. Griebel, Sparse grids, Acta Numer., 13 (2004), pp. 147–269.MathSciNetCrossRefGoogle Scholar
  6. 6.
    K. Burrage, M. Hegland, S. MacNamara, and R. B. Sidje, A Krylov-based finite state projection algorithm for solving the chemical master equation arising in the discrete modeling of biological systems, in Proceedings of the 150th Markov Anniversary Meeting, A. N. Langville and W. J. Stewart, eds., Boson Books, Raleigh, NC, 2006, pp. 21–38.Google Scholar
  7. 7.
    Y. Cao, D. Gillespie, and L. Petzold, Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems, J. Comput. Phys., 206 (2005), pp. 395–411.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Y. Cao, H. Li, and L. Petzold, Efficient formulation of the stochastic simulation algorithm for chemically reacting systems, J. Chem. Phys., 121 (2004), pp. 4059–4067.CrossRefGoogle Scholar
  9. 9.
    W. E, D. Liu and E. Vanden-Eijnden, Nested stochastic simulation algorithm for chemical kinetic systems with multiple time scales, J. Comput. Phys., 221 (2007), pp. 158–180.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, Stochastic gene expression in a single cell, Science, 297 (2002), pp. 1183–1186.CrossRefGoogle Scholar
  11. 11.
    S. Engblom, Computing the moments of high dimensional solutions of the master equation, Appl. Math. Comput., 180 (2006), pp. 498–515.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    S. Engblom, A Discrete Spectral Method for the Chemical Master Equation, Technical report 2008-005, Dept. of Information Technology, Uppsala University, Uppsala, Sweden, 2008, available at http://www.it.uu.se/research/publications/reports/2008-005/.Google Scholar
  13. 13.
    R. Erban, I. G. Kevrekidis, D. Adalsteinsson, and T. C. Elston, Gene regulatory networks: A coarse-grained, equation-free approach to multiscale computation, J. Chem. Phys., 124 (2006), 084106.Google Scholar
  14. 14.
    L. Ferm and P. Lötstedt, Adaptive solution of the master equation in low dimensions, Appl. Numer. Math., in press, 2008, doi:10.1016/j.apnum.2008.01.004.Google Scholar
  15. 15.
    C. W. Gardiner, Handbook of Stochastic Methods, 3rd edn., Springer, Berlin, 2004.MATHGoogle Scholar
  16. 16.
    M. A. Gibson, J. Bruck, Efficient exact stochastic simulation of chemical systems with many species and many channels, J. Phys. Chem., 104 (2000), pp. 1876–1889.Google Scholar
  17. 17.
    D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22 (1976), pp. 403–434.CrossRefMathSciNetGoogle Scholar
  18. 18.
    D. T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems, J. Chem. Phys., 115 (2001), pp. 1716–1733.CrossRefGoogle Scholar
  19. 19.
    D. T. Gillespie and L. R. Petzold, Numerical simulation for biochemical kinetics, in System Modeling in Cellular Biology. From Concepts to Nuts and Bolts, Z. Szallasi, J. Stelling, and V. Periwal, eds., MIT Press, Cambridge, MA, 2006, pp. 331–353.Google Scholar
  20. 20.
    E. Haseltine and J. Rawlings, Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics, J. Chem. Phys., 117 (2002), pp. 6959–6969.CrossRefGoogle Scholar
  21. 21.
    M. Hegland, C. Burden, L. Santoso, S. MacNamara, and H. Booth, A solver for the stochastic master equation applied to gene regulatory networks, J. Comput. Appl. Math., 205 (2007), pp. 708–724.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    A. Hellander and P. Lötstedt, Hybrid method for the chemical master equation, J. Comput. Phys., 227 (2007), pp. 100–122.MATHCrossRefGoogle Scholar
  23. 23.
    C.-Y. F. Huang and J. E. Ferrel Jr., Ultrasensitivity in the mitogen-activated protein kinase cascade, Proc. Natl. Acad. Sci. USA., 93 (1996), pp. 10078–10083.CrossRefGoogle Scholar
  24. 24.
    L. Huber, Mathematical modeling, numerical approximation and computational exploration of gene regulatory processes in the lambda phage, M.Sc. thesis, Centre for Mathematics and its Applications, Australian National University, Canberra, Australia, 2006.Google Scholar
  25. 25.
    T. Jahnke and W. Huisinga, Solving the chemical master equation for monomolecular reaction systems analytically, J. Math. Biol., 54 (2007), pp. 1–26.CrossRefMathSciNetGoogle Scholar
  26. 26.
    B. N. Kholodenko, Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades, Eur. J. Biochem., 267 (2000), pp. 1583–1588.CrossRefGoogle Scholar
  27. 27.
    D. Longo and J. Hasty, Dynamics of single-cell gene expression, Mol. Syst. Biol., 2 (2006), 64.Google Scholar
  28. 28.
    P. Lötstedt and L. Ferm, Dimensional reduction of the Fokker–Planck equation for stochastic chemical reactions, Multiscale Methods Simul., 5 (2006), pp. 593–614.MATHCrossRefGoogle Scholar
  29. 29.
    S. MacNamara, K. Burrage, and R. B. Sidje, Multiscale modeling of chemical kinetics via the master equation, Multiscale Methods Simul., 6 (2008), pp. 1146–1168.CrossRefMathSciNetMATHGoogle Scholar
  30. 30.
    H. H. McAdams and A. Arkin, It’s a noisy business. Genetic regulation at the nanomolar scale, Trends Gen., 15 (1999), pp. 65–69.CrossRefGoogle Scholar
  31. 31.
    J. M. McCollum, G. D. Peterson, C. D. Cox, M. L. Simpson, and N. F. Samtova, The sorting direct method for stochastic simulation of biochemical systems with varying reaction execution behaviour, Comput. Biol. Chem., 30 (2005), pp. 39–49.CrossRefGoogle Scholar
  32. 32.
    J. Paulsson, O. G. Berg, and M. Ehrenberg, Stochastic focusing: Fluctuation-enhanced sensitivity of intracellular regulation, Proc. Natl. Acad. Sci. USA, 97 (2000), pp. 7148–7153.CrossRefGoogle Scholar
  33. 33.
    J. Paulsson and J. Elf, Stochastic modeling of intracellular kinetics, in System Modeling in Cellular Biology. From Concepts to Nuts and Bolts, Z. Szallasi, J. Stelling, and V. Periwal, eds., MIT Press, Cambridge, MA, 2006, pp. 149–175.Google Scholar
  34. 34.
    M. F. Pettigrew and H. Resat, Multinomial tau-leaping method for stochastic kinetic simulations, J. Chem. Phys., 126 (2007), 084101.Google Scholar
  35. 35.
    H. Qian, S. Saffarian, and E. L. Elson, Concentration fluctuations in a mesoscopic oscillating chemical reaction system, Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 10376–10381.MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    C. V. Rao and A. P. Arkin, Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm, J. Chem. Phys., 118 (2003), pp. 4999–5010.CrossRefGoogle Scholar
  37. 37.
    M. Rathinam, L. R. Petzold, Y. Cao, and D. T. Gillespie, Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method, J. Chem. Phys., 119 (2003), pp. 12784–12794.CrossRefGoogle Scholar
  38. 38.
    H. Salis and Y. Kaznessis, Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions, J. Chem. Phys., 122 (2005), 054103.Google Scholar
  39. 39.
    A. Samant and D. G. Vlachos, Overcoming stiffness in stochastic simulation stemming from partial equilibrium: A multiscale Monte Carlo algorithm, J. Chem. Phys., 123 (2005), 144114.Google Scholar
  40. 40.
    P. Sjöberg, Numerical Methods for Stochastic Modeling of Genes and Proteins, Ph.D. thesis, Department of Information Technology, Uppsala University, Uppsala, Sweden, 2007.Google Scholar
  41. 41.
    P. Sjöberg, P. Lötstedt, and J. Elf, Fokker–Planck approximation of the master equation in molecular biology, to appear in Comput. Vis. Sci., 2008, doi 10.1007/s00791-006-0045-6.Google Scholar
  42. 42.
    N. G. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 1992.Google Scholar
  43. 43.
    J. M. G. Vilar, H. Y. Kueh, N. Barkai, and S. Leibler, Mechanisms of noise-resistance in genetic oscillators, Proc. Natl. Acad. Sci., 99 (2002), pp. 5988–5992.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • Markus Hegland
    • 1
  • Andreas Hellander
    • 2
  • Per Lötstedt
    • 2
  1. 1.Centre for Mathematics and its Applications, MSIAustralian National UniversityCanberraAustralia
  2. 2.Division of Scientific Computing, Department of Information TechnoloyUppsala UniversityUppsalaSweden

Personalised recommendations