Skip to main content
Log in

Polynomial cost for solving IVP for high-index DAE

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We show that the cost of solving initial value problems for high-index differential algebraic equations is polynomial in the number of digits of accuracy requested. The algorithm analyzed is built on a Taylor series method developed by Pryce for solving a general class of differential algebraic equations. The problem may be fully implicit, of arbitrarily high fixed index and contain derivatives of any order. We give estimates of the residual which are needed to design practical error control algorithms for differential algebraic equations. We show that adaptive meshes are always more efficient than non-adaptive meshes. Finally, we construct sufficiently smooth interpolants of the discrete solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Allgower and K. Georg, Introduction to Numerical Continuation Methods, SIAM, Philadelphia, 2003.

    MATH  Google Scholar 

  2. U. Ascher and L. Petzold, Computer Methods for ODE and DAE, SIAM, Philadelphia, 1998.

    Google Scholar 

  3. R. Barrio, Performance of the Taylor series methods for ODEs/DAEs, Appl. Math. Comput., 163(2) (2005), pp. 525–545.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Barrio, F. Blesa, and M. Lara, VSVO formulation of the Taylor method for the numerical solution of ODEs, Comput. Math. Appl., 50(1–2) (2005), pp. 93–111.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Ben-Israel and T. N. E. Greville, Generalized Inverses, Theory and Applications, Wiley-Interscience, New York, 1974.

    MATH  Google Scholar 

  6. J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations, John Wiley & Sons Ltd., Chichester, 1987.

    MATH  Google Scholar 

  7. É. Cartan, Les systémes différentiels extérieurs et leur applications géométriques, Hermann, Paris, 1945.

    Google Scholar 

  8. R. M. Corless, Error backward, Chaotic Numerics, AMS Contemporary Mathematics Series, 172 (1994), pp. 31–62.

    MathSciNet  Google Scholar 

  9. R. M. Corless, An elementary solution of a minimax problem arising in algorithms for automatic mesh selection, SIGSAM Bull.: Commun. Comput. Algebra, 34(4) (2001), pp. 7–15.

    Google Scholar 

  10. R. M. Corless, A new view of the computational complexity of IVP for ODE, Numer. Algorithms, 31 (2002), pp. 115–124.

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Corliss and Y. F. Chang, Solving ordinary differential equations using Taylor series, ACM Trans. Math. Softw., 8(2) (1982), pp. 114–144.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Douglis and L. Nirenberg, Interior estimates for elliptic systems of partial differential equations, Commun. Pure Appl. Math., 8 (1955), pp. 503–538.

    Article  MATH  MathSciNet  Google Scholar 

  13. W. H. Enright, A new error control for initial value solvers, Appl. Math. Comput., 31 (1989), pp. 288–301.

    Article  MathSciNet  Google Scholar 

  14. W. H. Enright, K. R. Jackson, S. P. Norsett, and P. G. Thomsen, Interpolants for Runge–Kutta formulas, ACM Trans. Math. Softw., 12(3) (1986), pp. 193–218.

    Article  MATH  MathSciNet  Google Scholar 

  15. I. Gladwell, L. F. Shampine, L. S. Baca, and R. W. Brankin, Practical aspects of interpolation in Runge–Kutta codes, SIAM J. Sci. Stat. Comput., 8(3) (1987), pp. 322–341.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Griewank, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Frontiers in Applied Mathematics, SIAM, Philadelphia, PA, 2000.

  17. E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I, Comput. Math., vol. 8, Springer, Berlin, 1987.

    MATH  Google Scholar 

  18. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Comput. Math., vol. 14, Springer, Berlin, 1991.

    MATH  Google Scholar 

  19. J. Hoefkens, M. Berz, and K. Makino, Efficient high-order methods for ODEs and DAEs, in: G. F. Corliss et al., eds., Automatic Differentiation: From Simulation to Optimization, Springer, New York, 2001, 343–350.

  20. J. van der Hoeven, Fast evaluation of holonomic functions, Theor. Comput. Sci., 210 (1999), pp. 199–215.

    Article  MATH  Google Scholar 

  21. S. Ilie, Computational complexity of numerical solutions of initial value problems for differential algebraic equations, PhD thesis, University of Western Ontario, 2005.

  22. S. Ilie, R. M. Corless, and G. Reid, Numerical solutions of index-1 differential algebraic equations can be computed in polynomial time, Numer. Algorithms, 41(2) (2006), pp. 161–171.

    Article  MATH  MathSciNet  Google Scholar 

  23. S. Ilie, G. Söderlind, and R. M. Corless, Adaptivity and computational complexity in the numerical solution of ODEs, J. Complexity (in press). doi:10.1016/j.jco.2007.11.004

  24. K. R. Jackson and N. Nedialkov, Some recent advances in validated methods for IVPs for ODEs, Appl. Numer. Math., 42(1) (2002), pp. 269–284.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Janet, Leçons sur les systèmes d’équations aux dérivées partielles, Gauthier-Villars, Paris, 1929.

    MATH  Google Scholar 

  26. R. E. Moore, Interval Analysis, Prentice Hall, Englewood Cliffs, New York, 1966.

    MATH  Google Scholar 

  27. N. S. Nedialkov, private communication.

  28. N. S. Nedialkov and J. D. Pryce, Solving differential-algebraic equations by Taylor series (I): computing Taylor coefficients, BIT, 45(3) (2005), pp. 561–591.

    Article  MATH  MathSciNet  Google Scholar 

  29. C. Pantelides, The consistent initialization of differential-algebraic systems, SIAM J. Sci. Stat. Comput., 9(2) (1988), pp. 213–231.

    Article  MATH  MathSciNet  Google Scholar 

  30. J. D. Pryce, Solving high-index DAEs by Taylor series, Numer. Algorithms, 19 (1998), pp. 195–211.

    Article  MATH  MathSciNet  Google Scholar 

  31. J. D. Pryce, A simple structural analysis method for DAEs, BIT, 41(2) (2001), pp. 364–394.

    Article  MATH  MathSciNet  Google Scholar 

  32. J. D. Pryce, private communication.

  33. L. B. Rall, Automatic Differentiation: Techniques and Applications, Springer, Berlin, 1981.

    MATH  Google Scholar 

  34. C. Riquier, Les systémes d’équations aux dérivées partielles, Gautier-Villars, Paris, 1910.

    Google Scholar 

  35. G. Söderlind, Automatic control and adaptive time-stepping, Numer. Algorithms, 31 (2002), pp. 281–310.

    Article  MATH  MathSciNet  Google Scholar 

  36. A. G. Werschulz, The Computational Complexity of Differential and Integral Equations, Oxford Science, Oxford, 1991.

    MATH  Google Scholar 

  37. W. Wu and G. Reid, Symbolic-numeric computation of implicit Riquier bases for PDE, Proc. of ISSAC 2007, ACM (2007), pp. 377–386.

  38. W. Wu, G. Reid, and S. Ilie, Implicit Riquier bases for PDAE and their discretizations, (submitted).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Ilie.

Additional information

AMS subject classification (2000)

34A09, 65L80, 68Q25

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corless, R., Ilie, S. Polynomial cost for solving IVP for high-index DAE . Bit Numer Math 48, 29–49 (2008). https://doi.org/10.1007/s10543-008-0163-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-008-0163-2

Key words

Navigation