Skip to main content
Log in

Computing periodic deflating subspaces associated with a specified set of eigenvalues

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We present a direct method for reordering eigenvalues in the generalized periodic real Schur form of a regular K-cyclic matrix pair sequence (A k ,E k ). Following and generalizing existing approaches, reordering consists of consecutively computing the solution to an associated Sylvester-like equation and constructing K pairs of orthogonal matrices. These pairs define an orthogonal K-cyclic equivalence transformation that swaps adjacent diagonal blocks in the Schur form. An error analysis of this swapping procedure is presented, which extends existing results for reordering eigenvalues in the generalized real Schur form of a regular pair (A,E). Our direct reordering method is used to compute periodic deflating subspace pairs corresponding to a specified set of eigenvalues. This computational task arises in various applications related to discrete-time periodic descriptor systems. Computational experiments confirm the stability and reliability of the presented eigenvalue reordering method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. C. Sorensen, LAPACK Users’ Guide, 3rd edn., SIAM, Philadelphia, PA, 1999.

    Google Scholar 

  2. Z. Bai and J. W. Demmel, On swapping diagonal blocks in real Schur form, Linear Algebra Appl., 186 (1993), pp. 73–95.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Benner and R. Byers, Evaluating products of matrix pencils and collapsing matrix products, Numer. Linear Algebra Appl., 8 (2001), pp. 357–380.

    Article  MATH  MathSciNet  Google Scholar 

  4. P. Benner, R. Byers, V. Mehrmann, and H. Xu, Numerical computation of deflating subspaces of skew-Hamiltonian/Hamiltonian pencils, SIAM J. Matrix Anal. Appl., 24(1) (2002), pp. 165–190.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Benner, V. Mehrmann, and H. Xu, Perturbation analysis for the eigenvalue problem of a formal product of matrices, BIT, 42(1) (2002), pp. 1–43.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Bittanti and P. Colaneri (eds.), Periodic Control Systems 2001, IFAC Proceedings Volumes, Elsevier Science & Technology, Amsterdam, NL, 2002.

  7. S. Bittanti, P. Colaneri, and G. De Nicolao, The periodic Riccati equation, in The Riccati Equation, S. Bittanti, A. J. Laub, and J. C. Willems, eds., Springer, Berlin, Heidelberg, Germany, 1991, pp. 127–162.

    Google Scholar 

  8. A. Bojanczyk, G. H. Golub, and P. Van Dooren, The periodic Schur decomposition; algorithm and applications, in Proc. SPIE Conference, vol. 1770 (1992), pp. 31–42.

  9. A. Bojanczyk and P. Van Dooren, On propagating orthogonal transformations in a product of 2x2 triangular matrices, in Numerical Linear Algebra, L. Reichel, A. Ruttan and R.S. Varga, eds., Walter de Gruyter, 1993, pp. 1–9.

  10. G. Fairweather and I. Gladwell, Algorithms for Almost Block Diagonal Linear Systems, SIAM Rev., 44(1) (2004), pp. 49–58.

    Article  MathSciNet  Google Scholar 

  11. B. Garrett and I. Gladwell, Solving bordered almost block diagonal systems stably and efficiently, J. Comput. Methods Sci. Eng., 1 (2001), pp. 75–98.

    MATH  Google Scholar 

  12. G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd edn., Johns Hopkins University Press, Baltimore, MD, 1996.

    MATH  Google Scholar 

  13. R. Granat, I. Jonsson, and B. Kågström, Recursive blocked algorithms for solving periodic triangular Sylvester-type matrix equations, in PARA’06 – State of the Art in Scientific and Parallel Computing, 2006, B. Kågström, ed., Lect. Notes Comput. Sci., vol. 4699, Springer, 2007, pp. 531–539.

  14. R. Granat and B. Kågström, Direct eigenvalue reordering in a product of matrices in periodic Schur form, SIAM J. Matrix Anal. Appl., 28(1) (2006), pp. 285–300.

    MATH  MathSciNet  Google Scholar 

  15. R. Granat, B. Kågström, and D. Kressner, Reordering the eigenvalues of a periodic matrix pair with applications in control, in Proc. of 2006 IEEE Conference on Computer Aided Control Systems Design (CACSD) (2006), pp. 25–30. (ISBN:0-7803-9797-5).

  16. R. Granat, B. Kågström, and D. Kressner, MATLAB tools for Solving Periodic Eigenvalue Problems, Accepted for 3rd IFAC Workshop PSYCO’07, Saint Petersburg, Russia, 2007.

  17. W. W. Hager, Condition estimates, SIAM J. Sci. Stat. Comput., 5 (1984), pp. 311–316.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. J. Hench and A. J. Laub, Numerical solution of the discrete-time periodic Riccati equation, IEEE Trans. Automat. Control, 39(6) (1994), pp. 1197–1210.

    Article  MATH  MathSciNet  Google Scholar 

  19. N. J. Higham, Fortran codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation, ACM Trans. Math. Software, 14(4) (1988), pp. 381–396.

    Article  MATH  MathSciNet  Google Scholar 

  20. N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd edn., SIAM, Philadelphia, PA, 2002.

    MATH  Google Scholar 

  21. B. Kågström, A direct method for reordering eigenvalues in the generalized real Schur form of a regular matrix pair (A,B), in Linear Algebra for Large Scale and Real–Time Applications, M.S. Moonen, G.H. Golub, and B.L.R. De Moor, eds., Kluwer Academic Publishers, Amsterdam, 1993, pp. 195–218.

    Google Scholar 

  22. B. Kågström and P. Poromaa, Distributed and shared memory block algorithms for the triangular Sylvester equation with sep-1 estimators, SIAM J. Matrix Anal. Appl., 13(1) (1992), pp. 90–101.

    Article  MATH  MathSciNet  Google Scholar 

  23. B. Kågström and P. Poromaa, Computing eigenspaces with specified eigenvalues of a regular matrix pair (A,B) and condition estimation: theory, algorithms and software, Numer. Algorithms, 12(3–4) (1996), pp. 369–407.

    Article  MATH  MathSciNet  Google Scholar 

  24. D. Kressner, An efficient and reliable implementation of the periodic QZ algorithm, in IFAC Workshop on Periodic Control Systems, S. Bittanti and P. Colaner, eds., Cernobbio-Como, Italy, 2001, pp. 187–192.

  25. D. Kressner, Numerical Methods and Software for General and Structured Eigenvalue Problems, PhD thesis, TU Berlin, Institut für Mathematik, Berlin, Germany, 2004.

  26. W.-W. Lin and J.-G. Sun, Perturbation analysis for the eigenproblem of periodic matrix pairs, Linear Algebra Appl., 337 (2001), pp. 157–187.

    Article  MATH  MathSciNet  Google Scholar 

  27. V. Mehrmann, The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution, in Lect. Notes Control Inf. Sci., Number 163, Springer, Heidelberg, 1991.

    Google Scholar 

  28. V. V. Sergeichuk, Computation of canonical matrices for chains and cycles of linear mappings, Linear Algebra Appl., 376 (2004), pp. 235–263.

    Article  MATH  MathSciNet  Google Scholar 

  29. J. Sreedhar and P. Van Dooren, Pole placement via the periodic Schur decomposition, in Proc. 1993 Amer. Contr. Conf., San Fransisco, CA, 1993, pp. 563–1567.

  30. J. Sreedhar and P. Van Dooren, A Schur approach for solving some periodic matrix equations, in Systems and Networks: Mathematical Theory and Applications, U. Helmke, R. Mennicken, and J. Saurer, eds., vol. 77, Akademie Verlag, Berlin, 1994, pp. 339–362.

  31. J. Sreedhar and P. Van Dooren, Forward/backward decomposition of periodic descriptor systems and two-point boundary value problems, European Control Conf. ECC 97, Brussels, Belgium, July 1–4, 1997.

  32. J. Sreedhar and P. Van Dooren, Periodic descriptor systems: solvability and conditionability, IEEE Trans. Automat. Control, 44(2) (1999), pp. 311–313.

    Article  Google Scholar 

  33. G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, New York, 1990.

    MATH  Google Scholar 

  34. J.-G. Sun, Perturbation bounds for subspaces associated with periodic eigenproblems, Taiwanese J. Math., 9(1) (2005), pp. 17–38.

    MATH  MathSciNet  Google Scholar 

  35. C. F. Van Loan, Generalized Singular Values with Algorithms and Applications, PhD thesis, The University of Michigan, 1973.

  36. A. Varga, Periodic Lyapunov equations: some applications and new algorithms, Int. J. Control, 67(1) (1997), pp. 69–87.

    Article  MATH  Google Scholar 

  37. A. Varga, Computation of Kronecker-like forms of periodic matrix pairs, in Proc. of Sixteenth International Symposium on Mathematical Theory of Networks and Systems (MTNS 2004), Leuven, Belgium, 2004.

  38. A. Varga, On solving discrete-time periodic Riccati equations, in Proc. of IFAC 2005 World Congress, Prague, Czech Republic, 2005.

  39. A. Varga and P. Van Dooren, Computational methods for periodic systems – an overview, in Proc. of IFAC Workshop on Periodic Control Systems, Como, Italy, 2001, pp. 171–176.

  40. D. S. Watkins, Product eigenvalue problems, SIAM Rev., 47 (2005), pp. 3–40.

    Article  MATH  MathSciNet  Google Scholar 

  41. J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

    MATH  Google Scholar 

  42. S. J. Wright, Stable parallel algorithms for two-point boundary value problems, SIAM J. Sci. Stat. Comput., 13(3) (1992), pp. 742–764.

    Article  MATH  Google Scholar 

  43. S. J. Wright, A collection of problems for which Gaussian elimination with partial pivoting is unstable, SIAM J. Sci. Comput., 14(1) (1993), pp. 231–238.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Kågström.

Additional information

AMS subject classification (2000)

65F15, 15A18, 93B60

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granat, R., Kågström, B. & Kressner, D. Computing periodic deflating subspaces associated with a specified set of eigenvalues . Bit Numer Math 47, 763–791 (2007). https://doi.org/10.1007/s10543-007-0143-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-007-0143-y

Key words

Navigation