Skip to main content
Log in

A minimum residual algorithm for solving linear systems

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

A minimum residual algorithm for solving a large linear system (I+S)x=b, with b∈ℂn and S∈ℂn×n being readily invertible, is proposed. For this purpose Krylov subspaces are generated by applying S and S -1 cyclically. The iteration can be executed with every linear system once the coefficient matrix has been split into the sum of two readily invertible matrices. In case S is a translation and a rotation of a Hermitian matrix, a five term recurrence is devised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Benzi, M. Gander, and G. H. Golub, Optimization of the Hermitian and skew-Hermitian splitting iteration for saddle-point problems, BIT, 43 (2003), suppl., pp. 881–900.

  2. R. N. Chan and W. K. Ching, Circulant preconditioners for stochastic automata networks, Numer. Math., 87 (2000), pp. 35–57.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. N. Chan and M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38 (1996), pp. 427–482.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Colton, J. Coyle, and P. Monk, Recent developments in inverse acoustic scattering theory, SIAM Rev., 42 (2000), pp. 369–414.

    Article  MATH  MathSciNet  Google Scholar 

  5. V. Druskin and L. Knizhnerman, Extended Krylov subspaces: approximation of the matrix square root and related functions, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 755–771.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. H. Golub and C. F. van Loan, Matrix Computations, 3rd edn., The John Hopkins University Press, Baltimore, London, 1996.

  7. W. B. Gragg, Positive definite Toeplitz matrices, the Hessenberg process for isometric operators, and the Gauss quadrature on the unit circle, in Numerical Methods of Linear Algebra (Russian), Moskov. Gos. Univ., Moscow, 1982, pp. 16–32.

  8. A. Greenbaum, Generalizations of the field of values useful in the study of polynomial functions of a matrix, Linear Algebra Appl., 347 (2002), pp. 233–249.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Huhtanen, A Hermitian Lanczos method for normal matrices, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 1092–1108.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Huhtanen and R. M. Larsen, Exclusion and inclusion regions for the eigenvalues of a normal matrix, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 1070–1091.

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Jagels and L. Reichel, A fast minimal residual algorithm for shifted unitary matrices, Numer. Linear Algebra Appl., 1 (1994), pp. 555–570.

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Jahnke and C. Lubich, Error bounds for exponential operator splittings, BIT, 40 (2000), pp. 735–744.

    Article  MATH  MathSciNet  Google Scholar 

  13. Mathworks, Matlab, www.mathworks.com/products/matlab.

  14. O. Nevanlinna, Convergence of Iterations for Linear Equations, Lectures in Mathematics ETH Zürich, Birkhäuser, 1993.

  15. M. Rozložnik and Z. Strakoš, Variants of the residual minimizing Krylov space methods, in Proceedings of the XIth Summer School on Software and Algorithms of Numerical Mathematics, I. Marek (ed.), Zelezna Ruda, Western Bohemia, 1995, pp. 208–225.

  16. A. Ruhe, Rational Krylov algorithms for nonsymmetric eigenvalue problems, Recent advances in iterative methods, IMA Vol. Math. Appl., 60, Springer, New York, 1994, pp. 149–164.

  17. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edn., SIAM, Philadelphia, PA, 2003.

  18. Y. Saad and M. H. Schultz, GMRES: A generalized minimum residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comp., 7 (1986), pp. 856–869.

    Article  MATH  MathSciNet  Google Scholar 

  19. V. Simoncini and D. B. Szyld, On the occurrence of superlinear convergence of exact and inexact Krylov subspace methods, SIAM Rev., 47 (2005), pp. 247–272.

    Article  MATH  MathSciNet  Google Scholar 

  20. H. van der Vorst, Iterative Krylov methods for large linear systems, Cambridge Monographs on Applied and Computational Mathematics, 13. Cambridge University Press, Cambridge, 2003.

  21. D. Watkins, Unitary orthogonalization processes, Special issue dedicated to William B. Gragg (Monterey, CA, 1996), J. Comput. Appl. Math., 86 (1997), pp. 335–345.

  22. P. Y. Wu, Additive combinations of special operators, Functional analysis and operator theory (Warsaw, 1992), Banach Center Publ., 30, Polish Acad. Sci., Warsaw, 1994, pp. 337–361.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Huhtanen.

Additional information

In memory of Germund Dahlquist (1925–2005).

AMS subject classification (2000)

65F10

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huhtanen, M., Nevanlinna, O. A minimum residual algorithm for solving linear systems . Bit Numer Math 46, 533–548 (2006). https://doi.org/10.1007/s10543-006-0073-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-006-0073-0

Key words

Navigation