Skip to main content
Log in

The logarithmic norm. History and modern theory

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In his 1958 thesis Stability and Error Bounds, Germund Dahlquist introduced the logarithmic norm in order to derive error bounds in initial value problems, using differential inequalities that distinguished between forward and reverse time integration. Originally defined for matrices, the logarithmic norm can be extended to bounded linear operators, but the extensions to nonlinear maps and unbounded operators have required a functional analytic redefinition of the concept.

This compact survey is intended as an elementary, but broad and largely self-contained, introduction to the versatile and powerful modern theory. Its wealth of applications range from the stability theory of IVPs and BVPs, to the solvability of algebraic, nonlinear, operator, and functional equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Butcher, A stability property of implicit Runge–Kutta methods, BIT, 15 (1975), pp. 358–361.

    Article  MATH  Google Scholar 

  2. M. G. Crandall and T. Liggett, Generation of semigroups of nonlinear transformation on general Banach spaces, Am. J. Math., 93 (1971), pp. 265–298.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Dahlquist, Stability and Error Bounds in the Numerical Integration of Ordinary Differential Equations, Almqvist & Wiksells, Uppsala, 1958; Transactions of the Royal Institute of Technology, Stockholm, 1959.

  4. G. Dahlquist, A special stability problem for linear multistep methods, BIT, 3 (1963), pp. 27–43.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Dahlquist, G-stability is equivalent to A-stability, BIT, 18 (1978), pp. 384–401.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Dahlquist, personal communication, c. 1985.

  7. K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.

  8. K. Dekker and J. G. Verwer, Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations, North Holland, New York, 1984.

  9. C. Desoer and H. Haneda, The measure of a matrix as a tool to analyze computer algorithms for circuit analysis, IEEE Trans. Circuit Theory, 19 (1972), pp. 480–486.

    Article  MathSciNet  Google Scholar 

  10. A. Dontchev and F. Lempio, Difference methods for differential inclusions: A survey, SIAM Rev., 34 (1992), pp. 263–294.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Frank, J. Schneid, and C. W. Ueberhuber, The concept of B-convergence, SIAM J. Numer. Anal., 18 (1981), pp. 753–780.

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Hansen, Convergence of multistep time discretizations of nonlinear dissipative evolution equations, SIAM J. Numer. Anal., 44 (2006), pp. 55–65.

    Google Scholar 

  13. E. Hansen, Runge–Kutta time discretizations of nonlinear dissipative evolution equations, Math. Comp., 75 (2006), pp. 631–640.

  14. I. Higueras and B. García-Celayeta, Logarithmic norms of matrix pencils, SIAM J. Matrix Anal. (1997), pp. 646–666.

  15. I. Higueras and G. Söderlind, Logarithmic norms and nonlinear DAE stability, BIT, 42 (2002), pp. 823–841.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. F. B. M. Kraaijevanger, B-convergence of the implicit midpoint rule and the trapezoidal rule, BIT, 25 (1985), pp. 652–666.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. M. Lozinskii, Error estimates for the numerical integration of ordinary differential equations, part I, Izv. Vyss. Uceb. Zaved Matematika, 6 (1958), pp. 52–90 (Russian).

    Google Scholar 

  18. J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.

  19. L. F. Shampine, What is stiffness?, in Stiff Computation, R. C. Aiken, ed., Oxford, New York, 1985.

  20. T. Ström, On logarithmic norms, SIAM J. Numer. Anal., 2 (1975), pp. 741–753.

    Article  Google Scholar 

  21. G. Söderlind, Bounds on nonlinear operators in finite-dimensional Banach spaces, Numer. Math., 50 (1986), pp. 27–44.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Spijker, Contractivity in the numerical solution of initial value problems, Numer. Math., 42 (1983), pp. 271–290.

    Article  MathSciNet  MATH  Google Scholar 

  23. H.-J. Stetter, Analysis of Discretization Methods for Ordinary Differential Equations, Springer, Berlin, Heidelberg, New York, 1973.

  24. L. N. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, 2005.

  25. J. von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr., 4 (1951), pp. 258–281.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustaf Söderlind.

Additional information

In memory of Germund Dahlquist (1925–2005).

AMS subject classification (2000)

65L05

Rights and permissions

Reprints and permissions

About this article

Cite this article

Söderlind, G. The logarithmic norm. History and modern theory . Bit Numer Math 46, 631–652 (2006). https://doi.org/10.1007/s10543-006-0069-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-006-0069-9

Key words

Navigation