Skip to main content
Log in

On the Convergence of the Generalized Linear Least Squares Algorithm

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper considers the issue of parameter estimation for biomedical applications using nonuniformly sampled data. The generalized linear least squares (GLLS) algorithm, first introduced by Feng and Ho (1993), is used in the medical imaging community for removal of bias when the data defining the model are correlated. GLLS provides an efficient iterative linear algorithm for the solution of the non linear parameter estimation problem. This paper presents a theoretical discussion of GLLS and introduces use of both Gauss Newton and an alternating Gauss Newton for solution of the parameter estimation problem in nonlinear form. Numerical examples are presented to contrast the algorithms and emphasize aspects of the theoretical discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA, 1996.

    Google Scholar 

  2. K. Chen, D. Bandy, E. Reiman, S. C. Huang, M. Lawson, D. Feng, L. Yun, and A. Palant, Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, F-fluoro-2-deoxyglucose, the Patlak method, and an image derived input function, J. Cereb. Blood Flow Metab., 18 (1998), pp. 716–723.

    Article  PubMed  Google Scholar 

  3. K. Chen, M. Lawson, E. Reiman, A. Cooper, D. Feng, S. C. Huang, D. Bandy, D. Ho, L. Yen, and A. Palant, Generalized linear least squares method for fast generation of myocardial blood flow parametric images with N-13 ammonia PET, IEEE Trans. Med. Imag., 17(2) (1998), pp. 236–243.

    Article  Google Scholar 

  4. A. R. Conn, N. I. M. Gould and P. L. Toint, Trust-Region Methods, MPS-SIAM, Philadelphia, PA, 2000.

    Google Scholar 

  5. D. Feng and D. Ho, Parametric imaging algorithms for multicompartmental models dynamic studies with positron emission tomography, in K. Uemura, N. A. Lassen, T. Jones, and I. Kanno (eds), Quantification of Brain Function: Tracer Kinetics and Image Analysis in Brain PET, Elsevier Science Publishers, Amsterdam, The Netherlands, 1993, pp. 127–137.

    Google Scholar 

  6. D. Feng, D. Ho, K. Chen, L. Wu, J. Wang, R. Liu, and S. Yeh, An evaluation of the algorithms for determining local cerebral metabolic rates of glucose using positron emission tomography dynamic data, IEEE Trans. Med. Imag., 14(4) (1994), pp. 697–710.

    Google Scholar 

  7. D. Feng, S. C. Huang, and Z. Wang, Models for computer simulation studies of input functions for tracer kinetic modeling with positron emission tomography, Intern. J. Bio-Med. Comp., 32 (1993), pp. 95–110.

    Article  Google Scholar 

  8. D. Feng, S. C. Huang, Z. Wang, and D. Ho, An unbiased parametric imaging algorithm for nonuniformly sampled biomedical system parameter estimation, IEEE Trans. Med. Imag., 15(4) (1996), pp. 512–518.

    Article  Google Scholar 

  9. D. Feng, Z. Wang, and S. C. Huang, A study on statistically reliable and computationally efficient algorithms for generating local cerebral blood flow parametric images with positron emission tomography, IEEE Trans. Med. Imag., 12(2) (1993), pp. 182–188.

    Article  Google Scholar 

  10. N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 1996.

    Google Scholar 

  11. G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd edn, The Johns Hopkins University Press, Baltimore, MD, 1989.

    Google Scholar 

  12. C. T. Kelley, Iterative Methods for Optimization, SIAM, Philadelphia, PA, 1999.

    Google Scholar 

  13. C. Negoita, Global kinetic imaging using dynamic positron emission tomography data, Ph.D. thesis, Department of Mathematics and Statistics, Arizona State University, AZ, 2003.

  14. C. Negoita and R. A. Renaut, On the convergence of the generalized linear least squares algorithm, http://snoopy.oit.edu/~negoitac or http://math.asu.edu/~rosie.

  15. M. Piert, R. Koeppe, B. Giordani, S. Berent, and D. Kuhl, Diminished glucose transport and phosphorylation in Alzheimer’s disease determined by dynamic FDG-PET, J. Nuclear Med., 37 (1996), pp. 201–208.

    Google Scholar 

  16. K. Wong and D. Feng, Generalized linear least squares algorithm for non-uniformly sampled biomedical system identification with possible repeated eigenvalues, Comp. Methods Prog. Biomed., 57 (1998), pp. 167–177.

    Article  Google Scholar 

  17. D. Zwillinger, Standard Mathematical Tables and Formulae, CRC Press LLC, Boca Raton, FL, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Negoita.

Additional information

AMS subject classification (2000)

65F10.

R. A. Renaut: This work was partially supported by the Arizona Center for Alzheimer’s Disease Research, by NIH grant EB 2553301 and for the second author by NSF CMG-02223.

Received December 2003. Revised November 2004. Communicated by Lars Eldén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negoita, C., Renaut, R.A. On the Convergence of the Generalized Linear Least Squares Algorithm. Bit Numer Math 45, 137–158 (2005). https://doi.org/10.1007/s10543-005-2638-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-005-2638-8

Keywords

Navigation