Skip to main content
Log in

Applications of the Generalized Fourier Transform in Numerical Linear Algebra

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Equivariant matrices, commuting with a group of permutation matrices, are considered. Such matrices typically arise from PDEs and other computational problems where the computational domain exhibits discrete geometrical symmetries. In these cases, group representation theory provides a powerful tool for block diagonalizing the matrix via the Generalized Fourier Transform (GFT). This technique yields substantial computational savings in problems such as solving linear systems, computing eigenvalues and computing analytic matrix functions such as the matrix exponential.

The paper is presenting a comprehensive self contained introduction to this field. Building upon the familiar special (finite commutative) case of circulant matrices being diagonalized with the Discrete Fourier Transform, we generalize the classical convolution theorem and diagonalization results to the noncommutative case of block diagonalizing equivariant matrices.

Applications of the GFT in problems with domain symmetries have been developed by several authors in a series of papers. In this paper we elaborate upon the results in these papers by emphasizing the connection between equivariant matrices, block group algebras and noncommutative convolutions. Furthermore, we describe the algebraic structure of projections related to non-free group actions. This approach highlights the role of the underlying mathematical structures, and provides insight useful both for software construction and numerical analysis. The theory is illustrated with a selection of numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Åhlander and H. Munthe-Kaas, Eigenvalues for equivariant matrices, J. Comput. Appl. Math. (2005). Available online via ScienceDirect.

  2. E. L. Allgower, K. Böhmer, K. Georg and R. Miranda, Exploiting symmetry in boundary element methods, SIAM J. Numer. Anal., 29 (1992), pp. 534–552.

  3. E. L. Allgower and A. F. Fässler, Blockstructure and equivalence of matrices, in Aspects of Complex Analysis, Differential Geometry, Mathematical Physics and Applications, pp. 19–34, World Scientific, 1999.

  4. E. L. Allgower and K. Georg, Exploiting symmetry in numerical solving, in Proceedings of the Seventh Workshop on Differential Equations and its Applications, C.-S. Chien, ed., Taichung, Taiwan, 1999.

  5. E. L. Allgower, K. Georg and R. Miranda, Exploiting permutation symmetry with fixed points in linear equations, in Lectures in Applied Mathematics, E. L. Allgower, K. Georg and R. Miranda, eds., vol. 29, American Mathematical Society, pp. 23–36, Providence, RI, 1993.

  6. E. L. Allgower, K. Georg, R. Miranda and J. Tausch, Numerical exploitation of equivariance, Z. Angew. Math. Mech., 78 (1998), pp. 185–201.

  7. T. Beth, Generalized Fourier Transforms, in Trends in Computer Algebra, Lect. Notes Comput. Sci., vol. 296, pp. 92–118, Springer, Berlin, 1988.

  8. M. Bonnet, Exploiting partial or complete geometrical symmetry in 3D symmetric Galerkin indirect BEM formulations, Int. J. Numer. Methods Eng., 57 (2003), pp. 1053–1083.

    Google Scholar 

  9. A. Bossavit, Symmetry, groups, and boundary value poblems. a progressive introduction to noncommutative harmonic analysis of partial differential equations in domains with geometrical symmetry, Comput. Methods Appl. Mech. Eng., 56 (1986), pp. 167–215.

  10. A. Bossavit, Boundary value problems with symmetry and their approximation by finite elements, SIAM J. Appl. Math., 53 (1993), pp. 1352–1380.

    Google Scholar 

  11. A. Clausen, Fast Fourier transforms for metabelian groups, SIAM J. Comput., 18 (1989), pp. 55–63.

  12. A. Clausen and U. Baum, Fast Fourier Transforms, Wissenschaftsverlag, Mannheim, 1993.

  13. A. Clausen and M. Müller, Generating fast Fourier transforms of solvable groups, J. Symb. Comput., 37 (2004), pp. 137–156.

    Google Scholar 

  14. P. Diaconis, Group representations in probability and statistics, in Lecture Notes – Monograph Series, Institute of Mathematical Statistics, Hayward, CA, 1988.

  15. P. Diaconis and D. N. Rockmore, Efficient computation of the Fourier transform on finite groups, J. Am. Math. Soc., 3 (1990), pp. 297–332.

    Google Scholar 

  16. C. C. Douglas and J. Mandel, Abstract theory for the domain reduction method, Computing, 48 (1992), pp. 73–96.

  17. S. Egner and M. Puschel, Symmetry-based matrix factorization, J. Symb. Comput., 37 (2004), pp. 157–186.

    Google Scholar 

  18. A. F. Fässler and E. Stiefel, Group Theoretical Methods and Their Applications, Birkhäuser, Boston, 1992.

  19. K. Georg and R. Miranda, Exploiting symmetry in solving linear equations, in Bifurcation and Symmetry, E. L. Allgower, K. Böhmer and M. Golubisky, eds., ISNM, vol. 104, pp. 157–168, Birkhäuser, Basel, 1992.

  20. K. Georg and R. Miranda, Symmetry aspects in numerical linear algebra with applications to boundary element methods, in Lectures in Applied Mathematics, E. L. Allgower, K. Georg and R. Miranda, eds., vol. 29, pp. 213–228, American Mathematical Society, Providence, RI, 1993.

  21. K. Georg and J. Tausch, A generalized Fourier transform for boundary element methods with symmetries, Technical report, Colorado State University, Ft. Collins, Colorado, 1994.

  22. G. James and M. Liebeck, Representations and Characters of Groups, Cambridge University Press, 2nd edn., 2001. ISBN 052100392X.

  23. M. Karpovsky, Fast Fourier transforms on finite non-abelian groups, IEEE Transact. Comput., 10 (1977), pp. 1028–1030.

  24. M. Ljungberg and K. Åhlander, Generic Programming Aspects of symmetry exploiting numerical software, in Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004, Jyväskylä, 24–28 July 2004, P. Neittaanmäki et al., eds., 2004. Also available as Technical Report 2004-020 from the Department of Information Technology, Uppsala University.

  25. J. S. Lomont, Applications of Finite Groups, Academic Press, New York, 1959.

  26. D. K. Maslen, The efficient computation of Fourier transforms on the symmetric group, Math. Comput., 67 (1998), pp. 1121–1147.

    Google Scholar 

  27. D. K. Maslen and D. N. Rockmore, Generalized FFTs – a survey of some recent results, in Proceedings of the 1995 DIMACS Workshop on Groups and Computation, L. Finkelstein and W. Kantor, eds., June 1997, pp. 183–237.

  28. D. K. Maslen and D. N. Rockmore, Separation of variables and the computation of Fourier transforms on finite groups, J. Am. Math. Soc., 10 (1997), pp. 169–214.

    Google Scholar 

  29. H. Munthe-Kaas, Symmetric FFTs; a general approach, in Topics in linear algebra for vector- and parallel computers, PhD thesis, NTNU, Trondheim, Norway, 1989. Available at http://hans.munthe-kaas.no.

  30. D. N. Rockmore, Fast Fourier analysis for abelian group extensions, Adv. Appl. Math., 11 (1990), pp. 164–204.

  31. D. N. Rockmore, Fast Fourier-transforms for wreath–products, Appl. Comput. Harmonic Anal., 2 (1995), pp. 279–292.

  32. D. N. Rockmore, Some applications of generalized FFTs, in Proceedings of the 1995 DIMACS Workshop on Groups and Computation, L. Finkelstein and W. Kantor, eds., June 1997, pp. 329–369.

  33. J. P. Serre, Linear Representations of Finite Groups, Springer, 1977. ISBN 0387901906.

  34. L. Stiller, Exploiting symmetry on parallel architectures, PhD thesis, Johns Hopkins University, 1995.

  35. J. Tausch, Equivariant preconditioners for boundary element methods, SIAM Sci. Comput., 17 (1996), pp. 90–99.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krister Åhlander.

Additional information

AMS subject classification (2000)

43A30, 65T99, 20B25

Rights and permissions

Reprints and permissions

About this article

Cite this article

Åhlander, K., Munthe-Kaas, H. Applications of the Generalized Fourier Transform in Numerical Linear Algebra. Bit Numer Math 45, 819–850 (2005). https://doi.org/10.1007/s10543-005-0030-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-005-0030-3

Key words

Navigation