## Abstract

In this paper, the asymptotical stability of the analytic solution and the numerical methods with constant stepsize for pantograph equations is investigated using the Razumikhin technique. In particular, the linear pantograph equations with constant coefficients and variable coefficients are considered. The stability conditions of the analytic solutions of those equations and the numerical solutions of the θ-methods with constant stepsize are obtained. As a result Z. Jackiewicz’s conjecture is partially proved. Finally, some experiments are given.

### Similar content being viewed by others

## References

A. Bellen, N. Guglielmi and L. Torelli,

*Asymptotic stability properties of θ-methods for the pantograph equation*, Appl. Numer. Math., 24 (1997), pp. 279–293.A. Bellen and M. Zennaro,

*Numerical Methods for Delay Differential Equations*, Oxford University Press, Oxford, 2003.H. Brunner,

*On the discretization of differential and Volterra integral equations with variable delay*, BIT, 37 (1997), pp. 1–12.M. D. Buhmann and A. Iserles,

*On the dynamics of a discretized neutral equation*, IMA J. Numer. Anal., 12 (1992), pp. 339–363.M. D. Buhmann and A. Iserles,

*Stability of the discretized pantograph differential equation*, Math. Comput. 60 (1993), pp. 575–589.M. D. Buhmann, A. Iserles and S. P. Nørsett,

*Runge-Kutta methods for neutral differential equations*, in: Contributions in Numerical Analysis (R. P. Agarwal, ed.), pp. 85–98, World Scientific, Singapore, 1993.J. Carr and J. Dyson,

*The functional differential equation**y*’(*x*)=*ay*(λ*x*)+*by*(*x*), Proc. R. Soc. Edinb., Sect. A, 13 (1975), pp. 165–174.M. R. Crisci, V. B. Kolmanovskii, E. Russo and A. Vecchio,

*Stabiltiy of difference Volterra equations: direct Liapunov method and numerical procedure*, Comput. Math. Appl., 36 (1998), pp. 72–97.G. A. Derfel,

*Kato problem for functional equations and difference Schrödinger operators*, Oper. Theory, 46 (1990), pp. 319–321.L. Fox, D. F. Mayers, J. R. Ockendon and A. B. Taylor,

*On a functional differential equation*, J. Inst. Math. Appl., 8 (1971), pp. 271–307.N. Giglielmi and M. Zennaro,

*Stability of one-leg θ-methods for the variable coefficient pantograph equation on the quasi-geometic mesh*, IMA J. Numer. Anal., 23 (2003), pp. 421–438.J. K. Hale,

*Introduction to Functional Differential Equations*, Springer, New York, 1993.A. Iserles,

*On the generalized pantograph functional-differential equation*, Eur. J. Appl. Math., 4 (1993), pp. 1–38.A. Iserles,

*Numerical analysis of delay differential equations with variable delays*, Ann. Numer. Math., 1 (1994), pp. 133–152.A. Iserles,

*On nonlinear delay differential equations*, Trans. Am. Math. Soc., 344 (1994), pp. 441–437.A. Iserles and J. Terjeki,

*Stability and asymptotical stablity of functional-differential equations*, J. Lond. Math. Soc., 51(2) (1995), pp. 559–572.A. Iserles,

*Exact and discretized stability of the pantograph equation*, Appl. Numer. Math., 24 (1997), pp. 295–308.Z. Jackiewicz,

*Asymptotic stability analysis of θ-methods for functional differential equations*, Numer. Math., 43 (1984), pp. 389–396.T. Kato and J. B. Mcleod,

*The functional-differential equation**y*’(*x*)=*ay*(λ*x*)+*by*(*x*), Bull. Am. Math. Soc., 77 (1971), pp. 719–731.T. Koto,

*Stability of Runge-Kutta methods for the generalized pantograph equation*, Numer. Math., 84 (1999), pp. 870–884.Y. Kuang,

*Delay Differential Equations with Applications in the Popolation Dynamics*, Springer, Academic Press, 1993.J. Liang and M. Z. Liu,

*Stability of numerical solutions to pantograph delay systems (in Chinese)*, J. Harbin Inst. Tech., 28 (1996), pp. 21–26.J. Liang and M. Z. Liu,

*Numerical stability of θ-methods for pantograph delay differential equations (in Chinese)*, J. Numer. Methods Comput. Appl., 12 (1996), pp. 271–278.J. Liang, S. Qiu and M. Z. Liu,

*The stability of θ-methods for pantograph delay differential equations (in Chinese)*, Numer. Math. (Engl. Ser.), 5 (1996), pp. 80–85.Y. Liu,

*Stablity of θ-methods for neutral functional-differential equations*, Numer. Math., 70 (1995), pp. 473–485.Y. Liu,

*On the θ-method for delay differential equations with infinite lag*, J. Comput. Appl. Math., 71 (1996), pp. 177–190.Y. Liu,

*Numerical investigation of the pantograph equation*, Appl. Numer. Math., 24 (1997), pp. 309–317.J. R. Ockendon and A. B. Taylor,

*The dynamics of a current collection system for an electric locomotive*, Proc. R. Soc. A, 322 (1971), pp. 447–468.N. Takama, Y. Muroya and E. Ishiwata,

*On the attainable oder of collocation methods for delay differential equations with proportional delay*, BIT, 40 (2000), pp. 374–394.L. Torelli,

*Stabilty of numerical methods for delay differential equations*, J. Comput. Appl. Math., 25 (1989), pp. 15–26.Y. Xu and M. Z. Liu, \(\mathcal{H}\)-

*stability of Runge–Kutta methods with general variable stepsize for pantograph equation*, Appl. Math. Comput., 148 (2004), pp. 881–892.

## Author information

### Authors and Affiliations

### Corresponding author

## Additional information

### AMS subject classification (2000)

65L02, 65L05, 65L20

## Rights and permissions

## About this article

### Cite this article

Liu, M., Yang, Z. & Hu, G. Asymptotical Stability of Numerical Methods with Constant Stepsize for Pantograph Equations.
*Bit Numer Math* **45**, 743–759 (2005). https://doi.org/10.1007/s10543-005-0022-3

Issue Date:

DOI: https://doi.org/10.1007/s10543-005-0022-3