BIT Numerical Mathematics

, Volume 45, Issue 3, pp 627–651 | Cite as

Fourth Order Symmetric Finite Difference Schemes for the Acoustic Wave Equation

  • Abraham ZemuiEmail author


We present an explicit, symmetric finite difference scheme for the acoustic wave equation on a rectangle with Neumann and/or Dirichlet boundary conditions. The scheme is fourth order accurate both in time and space. It is obtained by mass lumping of a finite element scheme. The accuracy and the difference approximations at the boundary are analyzed in terms of local and global errors.

Key words

finite element method error analysis lumped mass approximations finite difference approximation acoustic wave equation Helmholtz equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Cheney and D. Kincaid, Numerical Mathematics and Computing, Brooks/Cole, 1987.Google Scholar
  2. 2.
    G. Cohen, P. Joly, and N. Tordjman, Construction and analysis of high order finite elements with mass lumping for the wave equation, in Second International Conference on Mathematical and Numerical Aspects of Wave Propagation Phenomena, Kleinman, T. Angell, D. Colton, F. Santosa, and I. Stakgold, eds., SIAM, 2 (1993), pp. 152–160.Google Scholar
  3. 3.
    G. C. Cohen, Higher Order Numerical Methods for Transient Wave Equations, Springer, Berlin, Heidelberg, New York, 2002.Google Scholar
  4. 4.
    W. I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.Google Scholar
  5. 5.
    T. Dupont, L2-estimates for Galerkin methods for second order hyperbolic equations, SIAM J. Numer. Anal., 10 (1973), pp. 392–410.Google Scholar
  6. 6.
    B. Friedman, Principles and Techniques of Applied Mathematics, Wiley, New York, 1980.Google Scholar
  7. 7.
    B. Gustafsson and E. Mossberg, Time compact high order difference methods for wave propagation, SIAM J. Sci. Comput., 26 (2004), pp. 259–271.Google Scholar
  8. 8.
    B. Gustafsson and P. Wahlund, Time compact difference methods for wave propagation in discontinuous media, SIAM J. Sci. Comput., 26 (2004), pp. 272–293.Google Scholar
  9. 9.
    J. Lighthill, Waves in Fluids, Cambridge University Press, Cambridge, 1978.Google Scholar
  10. 10.
    L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sander, Fundamentals of Acoustics, Wiley, New York, 1995.Google Scholar
  11. 11.
    H.-O. Kreiss, Difference approximations for boundary and eigenvalue problems for ordinary differential equations, Math. Comput., 26 (1972), pp. 605–624.Google Scholar
  12. 12.
    E. Mossberg, Higher Order Finite Difference Methods for the Wave Propagation Problems, Licentiate thesis, Uppsala University, Department of Information Technology, 2001.Google Scholar
  13. 13.
    W. A. Mulder, Spurious modes in finite element discretizations of the wave equation may not be all that bad, Appl. Numer. Math., 30 (1999), pp. 425–445.Google Scholar
  14. 14.
    P. Olsson, D. Gottlieb, B. Gustafsson, and B. Strand, On the super convergence of Galerkin methods for hyperbolic IBVP, SIAM J. Numer. Anal., 33 (1996), pp. 1778–1796.Google Scholar
  15. 15.
    N. H. Ricker, Transient Waves in Visco-Elastic Media, Elsevier, North-Holland, Amsterdam, 1977.Google Scholar
  16. 16.
    G. R. Shubin and J. B. Bell, The stability of numerical boundary treatments for compact high-order finite-difference schemes, J. Comput. Phys., 108 (1993), pp. 272–295.Google Scholar
  17. 17.
    G. Strang, The Finite Element Method and Approximation Theory, Numerical solution of partial differential equations II (Synspade 1970), B. Hubbard, Academic, New York, 1971.Google Scholar
  18. 18.
    G. Strang and G. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 1973.Google Scholar
  19. 19.
    B. Swartz and B. Wendroff, Generalized finite difference schemes, Math. Comput., 23 (1969), pp. 37–49.Google Scholar
  20. 20.
    V. Thomée and B. Wendroff, Convergence estimates for Galerkin methods for variable coefficient initial value problems, SIAM J. Numer. Anal., 11 (1974), pp. 1059–1068.Google Scholar
  21. 21.
    L. N. Trefethen, Group velocity in finite difference schemes, SIAM Rev., 24 (1982), pp. 113–136.Google Scholar
  22. 22.
    J. Tuomela, A note on high order schemes for the one dimensional wave equation, BIT, 35 (1995), pp. 394–405.Google Scholar
  23. 23.
    J. Tuomela, On the construction of arbitrary order schemes for the many dimensional wave equation, BIT, 36 (1996), pp. 158–165.Google Scholar
  24. 24.
    A. Zemui, High order symmetric finite difference schemes for the acoustic wave equation, PhD thesis, Uppsala University, Department of Scientific Computing, 2003.Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of AsmaraAsmaraEritrea

Personalised recommendations