Biochemistry (Moscow)

, Volume 70, Issue 9, pp 998–1004 | Cite as

Generation of Free Radicals during Decomposition of Hydroperoxide in the Presence of Myeloperoxidase or Activated Neutrophils

  • O. M. PanasenkoEmail author
  • A. V. Chekanov
  • J. Arnhold
  • V. I. Sergienko
  • A. N. Osipov
  • Yu. A. Vladimirov


It was shown with the spin trap α-(4-pyridyl-1-oxide)-N-tert-butylnitrone that myeloperoxidase (MPO) in the presence of its substrates H2O2 and Cl as well as activated neutrophils destroy tert-butyl hydroperoxide producing two adducts of O-centered radicals which were identified as peroxyl and alcoxyl radicals. Inhibitory analysis performed with traps of hypochlorite (taurine and methionine), free radical scavengers (2,6-di-tret-butyl-4-methylphenol and mannitol), and MPO inhibitors (salicylhydroxamic acid and 4-aminobenzoic acid hydrazide) revealed that the destruction of the hydroperoxide group in the presence of isolated MPO or activated neutrophils was directly caused by the activity of MPO: some radical intermediates appeared as a result of the chlorination cycle of MPO at the stage of hypochlorite generation, whereas the other radicals were produced independently of hypochlorite, presumably with involvement of the peroxidase cycle of MPO. The data suggest that the activated neutrophils located in the inflammatory foci and secreting MPO into the extracellular space can convert hydroperoxides into free radicals initiating lipid peroxidation and other free radical reactions and, thus, promoting destruction of protein-lipid complexes (biological membranes, blood lipoproteins, etc.).

Key words

myeloperoxidase neutrophils hypochlorite tret-butyl hydroperoxide free radicals peroxyl radical spin traps 



lipid peroxidation




electron paramagnetic resonance






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Halliwell, B., and Gutteridge, J. M. C. (1999) Free Radicals in Biology and Medicine, Oxford University Press.Google Scholar
  2. 2.
    Vladimirov, Yu. A., and Archakov, A. I. (1972) Lipid Peroxidation in Biological Membranes [in Russian], Nauka, Moscow.Google Scholar
  3. 3.
    Kagan, V. E., Orlov, O. N., and Prilipko, L. L. (1986) Advances in Science and Technology. Ser. Biophysics [in Russian], Vol. 18, VINITI, Moscow, pp. 5–135.Google Scholar
  4. 4.
    Panasenko, O. M., Arnhold, J., and Sergienko, V. I. (2002) Biol. Membr. (Moscow), 19, 403–434.Google Scholar
  5. 5.
    Panasenko, O. M. (1997) BioFactors, 6, 181–190.PubMedGoogle Scholar
  6. 6.
    Klebanoff, S. J., and Clark, R. A. (1978) The Neutrophil: Function and Clinical Disorders, Elsevier North Holland, Amsterdam.Google Scholar
  7. 7.
    Arnhold, J. (2004) Biochemistry (Moscow), 69, 4–9.CrossRefGoogle Scholar
  8. 8.
    Shafran, M. G. (1981) Usp. Sovr. Biol., 92, 365–379.PubMedGoogle Scholar
  9. 9.
    Panasenko, O. M., Osipov, A. N., Chekanov, A. V., Arnhold, J., and Sergienko, V. I. (2002) Biochemistry (Moscow), 67, 880–888.CrossRefGoogle Scholar
  10. 10.
    Osipov, A. N., Panasenko, O. M., Chekanov, A. V., and Arnhold, J. (2002) Free Rad. Res., 36, 749–754.CrossRefGoogle Scholar
  11. 11.
    Zubarev, V. E. (1984) Spin Trap Approach. Application in Chemistry, Biology, and Medicine [in Russian], MGU Publishers, Moscow.Google Scholar
  12. 12.
    Boyum, A. (1964) Nature, 204, 793–794.PubMedGoogle Scholar
  13. 13.
    Boyum, A. (1968) Scand. J. Clin. Lab. Invest., 21, 74–89.Google Scholar
  14. 14.
    Duling, D. R. (1994) J. Magn. Reson., B104, 105–110.Google Scholar
  15. 15.
    Kettle, A. J., and Winterbourn, C. C. (1994) Meth. Enzymol., 233, 502–512.PubMedGoogle Scholar
  16. 16.
    Kettle, A. J., and Winterbourn, C. C. (1997) Red. Report, 3, 3–15.Google Scholar
  17. 17.
    Deby-Dupont, G., Deby, C., and Lamy, M. (1999) Intensivmed., 36, 500–513.CrossRefGoogle Scholar
  18. 18.
    Bakkenist, R. J., De Boer, J. E. G., Plat, H., and Wever, R. (1980) Biochim. Biophys. Acta, 613, 337–348.PubMedGoogle Scholar
  19. 19.
    Kettle, A. J., and Winterbourn, C. C. (1991) Biochem. Pharmacol., 41, 1485–1492.CrossRefPubMedGoogle Scholar
  20. 20.
    Osipov, A. N., Savov, V. M., Yax'yaev, A. V., Zubarev, V. E., Azizova, O. A., Kagan, V. E., and Vladimirov, Yu. A. (1984) Biofizika, 29, 533–536.PubMedGoogle Scholar
  21. 21.
    Osipov, A. N., Moravskii, A. P., Shuvalov, V. F., Azizova, O. A., and Vladimirov, Yu. A. (1980) Biofizika, 25, 234–238.PubMedGoogle Scholar
  22. 22.
    Furtmueller, P. G., Burner, U., Jantschko, W., Regelsberger, G., and Obinger, C. (2000) FEBS Lett., 484, 139–143.CrossRefPubMedGoogle Scholar
  23. 23.
    Howard, J. A., and Ingold, K. U. (1968) J. Am. Chem. Soc., 90, 1056–1058.CrossRefGoogle Scholar
  24. 24.
    Rice-Evans, C., Leake, D., Bruckdorfer, K. R., and Diplock, A. T. (1996) Free Rad. Res., 25, 285–311.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • O. M. Panasenko
    • 1
    Email author
  • A. V. Chekanov
    • 1
  • J. Arnhold
    • 2
  • V. I. Sergienko
    • 1
  • A. N. Osipov
    • 3
  • Yu. A. Vladimirov
    • 3
  1. 1.Institute of Physicochemical MedicineMoscowRussia
  2. 2.Institute of Medical Physics and BiophysicsUniversity of LeipzigLeipzigGermany
  3. 3.Russian State Medical UniversityMoscowRussia

Personalised recommendations