Skip to main content

Oxidative Processes Induced by tert-Butyl Hydroperoxide in Human Red Blood Cells: Chemiluminescence Studies

Abstract

The erythrocyte is a good model for investigation of the mechanisms of cell damage induced by oxidizing agents. Oxidative damage to cell components and cellular metabolism results in impaired rheological properties of circulating red blood cells and is involved in the development of some pathologies. The aim of the present study was to elucidate further the oxidative processes induced by tert-butyl hydroperoxide (tBOOH) in erythrocytes, identify cellular targets damaged by the oxidant, as well as estimate the energy and stoichiometry of the reactions that occur. The generation of free radicals in the cell was registered using the chemiluminescence technique. The products of oxyhemoglobin (oxyHb) oxidation, changes in intracellular glutathione (GSH) pool, and accumulation of the stable products of membrane lipid peroxidation were concurrently measured. The oxidative processes induced by tBOOH in red blood cells can be described as follows: 1) rapid GSH oxidation (30–60 sec) by glutathione peroxidase; 2) formation of radicals in the reaction between tBOOH and cellular Hb, which are then immediately consumed in lipid peroxidation reactions; 3) generation of chemiluminescence by the radicals formed. Several stages of the oxidative processes can be revealed. The order of the chemiluminescence reaction (n) with respect to oxidant was estimated to be equal to 2.5 at oxidant concentrations less than 0.5 mM and equal to 1.0 at higher oxidant concentrations. The order of the reaction of membrane lipid peroxidation was found to be n = 2.2 at 0.25–0.6 mM tBOOH and n = 0.5 at higher oxidant concentrations. The apparent activation energy of membrane lipid peroxidation was 55.8 ± 6.4 kJ/mol, and that of oxyHb oxidation was 108 ± 16 kJ/mol. It is shown that the interaction of tBOOH and HOCl in erythrocytes is accompanied by changes in both the total number of radicals generated in the cell and the time corresponding to the maximal rate of radical generation.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. Sies, H. (1991) in Oxidative Stress: Oxidants and Antioxidants, Academic Press, London, pp. 15–22.

    Google Scholar 

  2. Saran, M., and Bors, W. (1990) Radiat. Environ. Biophys., 29, 249–262.

    Article  PubMed  Google Scholar 

  3. Chin, D., Lubin, B., and Shohet, S. B. (1982) in Free Radicals in Biology (Pryor, W. A., ed.) Vol. 5, Academic Press, New York-London, pp. 116–160.

    Google Scholar 

  4. Clark, M. R. (1988) Physiol. Rev., 68, 503–534.

    PubMed  Google Scholar 

  5. Bartosz, G. (1990) in Blood Cell Biochemistry, Vol. 1, Erythroid Cell (Harris, J. R., ed.) Premium Press, New York, pp. 45–79.

    Google Scholar 

  6. Caprary, P., Bozzi, A., Malorni, W., Bottini, A., Eosi, F., Santini, M. T., and Salvati, A. M. (1995) Chem.-Biol. Interact., 94, 243–258.

    Article  PubMed  Google Scholar 

  7. Aherne, S. A., and O’Brien, N. M. (2000) Free Rad. Biol. Med., 29, 507–514.

    Article  PubMed  Google Scholar 

  8. Barr, D. P., Martin, M. V., Guengerich, F. P., and Mason, R. P. (1996) Chem. Res. Toxicol., 9, 318–325.

    Article  PubMed  Google Scholar 

  9. Van der Zee, J., Barr, D. P., and Mason, R. P. (1996) Free Rad. Biol. Med., 20, 199–206.

    Article  PubMed  Google Scholar 

  10. Halliwell, B., and Gutteridge, J. M. C. (eds.) (1999) Free Radicals in Biology and Medicine, 3rd Edn., Oxford University Press, New York.

    Google Scholar 

  11. Bryszewska, M., Piasecka, A., Zavodnik, L. B., Distel, L., and Schussler, H. (2003) Biochim. Biophys. Acta, 1621, 285–291.

    PubMed  Google Scholar 

  12. Fraga, C., and Tappel, A. L. (1988) Biochem. J., 252, 893–896.

    PubMed  Google Scholar 

  13. Mazhul, V., Shcherbin, D., Zavodnik, I., Rekawiecka, K., and Bryszewska, M. (1999) Cell. Biol. Int., 23, 345–350.

    Article  PubMed  Google Scholar 

  14. Vladimirov, Yu. A., and Sherstnev, M. P. (1989) Chemiluminescence of Animal Cells, in Advances in Science and Technology. Ser. Biophysics [in Russian], Vol. 24, VINITI, Moscow.

    Google Scholar 

  15. Zavodnik, I., Ertel, D., Bryszewska, M., and Kedziora, J. (1997) Curr. Top. Biophys., 21, 62–66.

    Google Scholar 

  16. Stocks, J., and Dormandy, T. L. (1971) Br. J. Haematol., 20, 95–111.

    PubMed  Google Scholar 

  17. Ellman, G. (1959) Arch. Biochem. Biophys., 82, 70–77.

    Article  PubMed  Google Scholar 

  18. Akerboom, T. P. M., and Sies, H. (1981) Meth. Enzymol., 77, 373–382.

    PubMed  Google Scholar 

  19. Rossi, R., Cardaioli, E., Scaloni, A., Amiconi, F., and Di Simplicio, P. (1995) Biochim. Biophys. Acta, 1243, 230–238.

    PubMed  Google Scholar 

  20. Winterbourn, C. C., McGrath, B. M., and Carrel, R. W. (1976) Biochem. J., 155, 493–502.

    PubMed  Google Scholar 

  21. Szebeni, J., Winterbourn, C. C., and Carrell, R. W. (1984) Biochem. J., 220, 685.

    PubMed  Google Scholar 

  22. Makino, N., Bannai, S., and Sugita, Y. (1995) Biochim. Biophys. Acta, 1243, 503–508.

    PubMed  Google Scholar 

  23. Rohn, T. T., Hinds, T. R., and Vincenzi, F. F. (1993) Biochim. Biophys. Acta, 1153, 67–76.

    PubMed  Google Scholar 

  24. Sestili, P., Brambilla, L., and Cantoni, O. (1999) FEBS Lett., 457, 139–143.

    Article  PubMed  Google Scholar 

  25. Van der Zee, J., Dubbelman, T. M. A. R., and van Steveninck, J. (1985) Biochim. Biophys. Acta, 818, 38–44.

    PubMed  Google Scholar 

  26. Ataullakhanov, F. I., Vitvitskii, V. M., Zhabotinskii, A. M., Kiyatkin, A. B., Pichugin, A. V., and Sinauridze, E. I. (1986) Biokhimiya, 51, 1562–1570.

    Google Scholar 

  27. Bryszewska, M., Zavodnik, I. B., Niekurzak, A., and Szosland, K. (1995) Biochem. Mol. Biol. Int., 37, 345–354.

    PubMed  Google Scholar 

  28. Zavodnik, L. B., Zavodnik, I. B., Niekurzak, A., Szosland, K., and Bryszewska, M. (1998) Biochem. Mol. Biol. Int., 44, 577–588.

    PubMed  Google Scholar 

  29. Krajewska, E., Zavodnik, I., Kluska, B., Szosland, K., and Bryszewska, M. (1997) Biochem. Mol. Biol. Int., 42, 203–210.

    PubMed  Google Scholar 

  30. Augustyniak, K., Zavodnik, I., Palecz, D., Szosland, K., and Bryszewska, M. (1996) Clin. Biochem., 29, 283–286.

    Article  PubMed  Google Scholar 

  31. Yoshida, Y., Kashiba, K., and Niki, E. (1994) Biochim. Biophys. Acta, 1201, 165–172.

    PubMed  Google Scholar 

  32. Rest, R. F. (1994) Meth. Enzymol., 236, 119–137.

    PubMed  Google Scholar 

  33. Yesilkaya, A., and Yegin, A. (1998) Gen. Pharmac., 30, 495–498.

    Article  Google Scholar 

  34. Gabbianelli, R., Santroni, A. M., Concetti, A., Kantar, A., and Falcioni, G. (1996) Comp. Biochem. Physiol., 115C, 83–87.

    Google Scholar 

  35. Pogosyan, G. A., Dremina, E. S., Sharov, V. S., Zakaryan, A. E., Panpsyan, G. A., and Vladimirov, Yu. A. (1996) Biofizika, 41, 342–347.

    PubMed  Google Scholar 

  36. Sano, M., Kawabata, H., Tomita, I., Yoshioka, H., and Hu, M. L. (1994) J. Toxicol. Environ. Health, 43, 339–350.

    PubMed  Google Scholar 

  37. Osipov, A. N., Panasenko, O. M., Chekanov, A. V., and Arnhold, J. (2002) Free Rad. Res., 36, 749–754.

    Article  Google Scholar 

  38. Arnhold, J., Panasenko, O. M., Schiller, L., Arnold, K., Vladimirov, J. A., and Sergienko, V. I. (1996) Z. Naturforsch., 51c, 386–394.

    Google Scholar 

  39. Zavodnik, I. B., Lapshina, E. A., Zavodnik, L. B., Soszynski, M., Bartosz, G., and Bryszewska, M. (2002) Bioelectrochemistry, 58, 127–135.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Zavodnik.

Additional information

__________

Translated from Biokhimiya, Vol. 70, No. 7, 2005, pp. 922–932.

Original Russian Text Copyright © 2005 by Domanski, Lapshina, Zavodnik.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM04-123, December 26, 2004.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Domanski, A.V., Lapshina, E.A. & Zavodnik, I.B. Oxidative Processes Induced by tert-Butyl Hydroperoxide in Human Red Blood Cells: Chemiluminescence Studies. Biochemistry (Moscow) 70, 761–769 (2005). https://doi.org/10.1007/s10541-005-0181-5

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10541-005-0181-5

Key words

  • human red blood cells
  • oxidative stress
  • organic hydroperoxide
  • hypochlorous acid
  • hemoglobin
  • chemiluminescence