Skip to main content
Log in

Human Immunoglobulin Light Chains λ Form Amyloid Fibrils and Granular Aggregates in Solution

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Myeloma nephropathy is a disorder characterized by deposition of monoclonal immunoglobulin light chains in the kidneys. The chains deposited form either amyloid fibrils or granular (amorphous) aggregates. Distinct molecular mechanisms leading to the formation of different aggregate types in kidney of patients with multiple myeloma are poorly understood. Here we describe the self-association kinetics of human monoclonal immunoglobulin light chains λ (GRY) isolated from urine of a patient with multiple myeloma. Under physiological conditions, the isolated light chain exists predominantly in a form of covalent dimer with apparent molecular mass of 50.1 kD. Spectral probe binding, analytical gel filtration, Western blot analysis, and electron microscopy indicate that GRY dimer aggregation occurs via two different pathways producing either amyloid fibrils or amorphous aggregates depending on microenvironment. Incubation of GRY (25 µM) for 4–14 days at 37°C in phosphate buffered saline (PBS), pH 7.0, or in PBS containing urea (0.8 M), pH 6.5, leads to amyloid fibril formation. Under electron microscopy, the fibrils show unbranched thread-like structures, ∼ 60–80 × 1000 Å in size, which can bind thioflavin T and Congo Red. GRY maintained in acetate buffer, pH 3.5, forms granular aggregates. The structure of GRY oligomers formed during the early stage of amyloid fibril formation (1–4 days) has been examined by means of protein cross-linking with homobifunctional reagents. These oligomers are predominantly trimers and tetramers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DSS:

suberic acid bis(N-hydroxysuccinimide ester)

BS3 :

suberic acid bis(3-sulfo-N-hydroxysuccinimide ester)

EDC:

N-ethyl-3-(3-dimethylaminopropyl)carbodiimide

PBS:

phosphate buffered saline

REFERENCES

  1. Gryazeva, I. V., Klimovich, V. B., and Pashkova, S. F. (1994) Immunologiya, 4, 31–37.

    Google Scholar 

  2. Huff, M. E., Balch, W. E., and Kelly, J. W. (2003) Curr. Opin. Struct. Biol., 13, 674–682.

    CAS  PubMed  Google Scholar 

  3. Pozzi, C., and Locatelli, F. (2002) Semin. Nephrol., 22, 319–330.

    CAS  PubMed  Google Scholar 

  4. Wetzel, R. (1997) in Advances in Protein Chemistry, 50, 183–236.

    CAS  PubMed  Google Scholar 

  5. Laemmli, U. K. (1970) Nature, 227, 680–685.

    CAS  PubMed  Google Scholar 

  6. Wall, Y., Murphy, C. L., and Solomon, A. (1999) Meth. Enzymol., 309, 204–216.

    CAS  PubMed  Google Scholar 

  7. Towbin, H., Staehlin, T., and Gordon, J. (1979) Proc. Natl. Acad. Sci. USA, 176, 4350–4354.

    Google Scholar 

  8. Yphantis, D. A. (1960) Ann. N. Y. Acad. Sci., 88, 586–592.

    CAS  PubMed  Google Scholar 

  9. Stevens, F. J., Westholm, F. A., Solomon, A., and Schiffer, M. (1980) Proc. Natl. Acad. Sci. USA, 77, 1144–1448.

    CAS  PubMed  Google Scholar 

  10. Stevens, F. J., and Schiffer, M. (1981) Biochem. J., 195, 213–219.

    CAS  PubMed  Google Scholar 

  11. Myatt, E. A., Westholm, F. A., Weiss, D. T., Solomon, A., Schiffer, M., and Stevens, F. J. (1994) Proc. Natl. Acad. Sci. USA, 91, 3034–3038.

    CAS  PubMed  Google Scholar 

  12. Marsh, D. Y., and Knepper, M. A. (1993) in Renal Physiology (Walker, J. M., ed.), pp. 1317–1347.

  13. Azuma, T., Hamaguchi, K., and Migita, S. (1973) J. Biochem., 73, 1259–1269.

    CAS  PubMed  Google Scholar 

  14. Liepnieks, J. J., Dwulet, F. E., and Benson, M. D. (1990) Mol. Immunol., 27, 481–485.

    CAS  PubMed  Google Scholar 

  15. Khurana, R., Gillespie, J. R., Talapatra, A., Minert, L. J., Ionescu-Zanetti, C., Millett, I., and Fink, A. L. (2001) Biochemistry, 40, 3525–3535.

    CAS  PubMed  Google Scholar 

  16. Davis, D. P., Gallo, G., Vogen, S. M., Dul, J. L., Sciarretta, K. L., Kumar, A., Raffen, R., Stevens, F. J., and Argon, Y. (2001) J. Mol. Biol., 313, 1021–1034.

    CAS  PubMed  Google Scholar 

  17. Stevens, F. J., Myatt, E. A., Chang, C. H., Westholm, F. A., Eulitz, M., Weiss, D. T., Murphy, C., Solomon, A., and Schiffer, M. (1995) Biochemistry, 34, 10697–10702.

    CAS  PubMed  Google Scholar 

  18. Souillac, P. O., Uversky, V. N., Millett, I. S., Khurana, R., Doniach, S., and Fink, A. L. (2002) J. Biol. Chem., 277, 12666–12679.

    CAS  PubMed  Google Scholar 

  19. Souillac, P. O., Uversky, V. N., and Fink, A. L. (2003) Biochemistry, 42, 8094–8104.

    CAS  PubMed  Google Scholar 

  20. Abraham, R. S., Charlesworth, M. C., Owen, B. A., Benson, L. M., Katzmann, J. A., Reeder, C. B., and Kyle, R. A. (2002) Clin. Chem., 48, 1805–1811.

    CAS  PubMed  Google Scholar 

  21. Solling, K., Solling, J., and Lanng Nielsen, J. (1984) Acta Med. Scand., 216, 495–502.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Bliznyukov.

Additional information

__________

Translated from Biokhimiya, Vol. 70, No. 4, 2005, pp. 556–567.

Original Russian Text Copyright © 2005 by Bliznyukov, Kozmin, Vysotskaya, Golenkov, Tishchenko, Samoylovich, Klimovich.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM04-087, August 15, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bliznyukov, O.P., Kozmin, L.D., Vysotskaya, L.L. et al. Human Immunoglobulin Light Chains λ Form Amyloid Fibrils and Granular Aggregates in Solution. Biochemistry (Moscow) 70, 458–466 (2005). https://doi.org/10.1007/s10541-005-0137-9

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10541-005-0137-9

Key words

Navigation