Skip to main content
Log in

Monomeric and Multimeric Blockers of Selectins: Comparison of in vitro and in vivo Activity

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The potency of the oligosaccharides SiaLex, SiaLea, HSO3Lex, and HSO3Lea, their conjugates with polyacrylamide (PAA, 40 kD), and other monomeric and polymeric selectin inhibitors has been compared with that of the polysaccharide fucoidan. The following assay systems were used: 1) a 96-well assay based either on the use of recombinant E-, P-, and L- selectins or an analogous assay with natural P-selectin isolated from human platelets; 2) a platelet-based P-selectin cell assay; and 3) a rat model of peritoneal inflammation. IC50 values for the neoglycoconjugate SiaLea-PAA were 6, 40, and 85 µM for recombinant E-, P-, and L-selectins, respectively; all monomeric inhibitors were about two orders of magnitude weaker. PAA-conjugates, containing as a ligand tyrosine-O-sulfate (sTyr) in addition to one of the sialylated oligosaccharides, were the most potent synthetic blockers in vitro. Compared with fucoidan, the most potent known P- and L-selectin blocker, the bi-ligand glycoconjugate HSO3Lea-PAA-sTyr displayed similar inhibitory activity in vitro towards L-selectin and about ten times lower activity towards P-selectin. All of the tested synthetic polymers displayed a similar ability to inhibit neutrophil extravasation in the peritonitis model (in vivo) at 10 mg/kg. The data provide evidence that monomeric SiaLex is considerably more effective as a selectin blocker in vivo than in vitro, whereas the opposite is true for fucoidan and the bi-ligand neoglycoconjugate HSO3Lea-PAA-sTyr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SiaLex :

sialyl Lewis X, Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAc

SiaLea :

sialyl Lewis A, Neu5Acα2-3Galβ1-3(Fucα1-4)GlcNAc

HSO3Lex :

3′-sulfo-Lewis X, 3′-HSO3Galβ1-4(Fucα1-3)GlcNAc

HSO3Lea :

3′-sulfo-Lewis A, 3′-HSO3Galβ1-3(Fucα1-4)GlcNAc

sTyr:

tyrosine-O-sulfate

PAA:

polyacrylamide

ZZ:

IgG-binding fragment of protein A

biot:

biotin residue

REFERENCES

  1. Bevilacqua, M. P., and Nelson, R. M. J. (1993) J. Clin. Invest., 91, 379–387.

    CAS  PubMed  Google Scholar 

  2. Lasky, L. A. (1992) Science, 258, 964–969.

    CAS  PubMed  Google Scholar 

  3. McEver, R. P., Moore, K. L., and Cummings, R. D. (1995) J. Biol. Chem., 270, 11025–11028.

    CAS  PubMed  Google Scholar 

  4. Springer, T. A. (1990) Nature, 346, 425–434.

    CAS  PubMed  Google Scholar 

  5. Vestweber, D., and Blanks, J. E. (1999) Physiol. Rev., 79, 181–213.

    CAS  PubMed  Google Scholar 

  6. Sako, D., Comess, K. M., Barone, K. M., Camphausen, R. T., Cummings, D. A., and Shaw, G. D. (1995) Cell, 83, 323–331.

    CAS  PubMed  Google Scholar 

  7. Rosen, S. D., and Bertozzi, C. R. (1994) Curr. Opin. Cell Biol., 6, 663–673.

    CAS  PubMed  Google Scholar 

  8. Butcher, E. C., and Picker, L. J. (1996) Science, 272, 60–66.

    CAS  PubMed  Google Scholar 

  9. Vestweber, D. (1996) J. Cell. Biochem., 61, 585–591.

    CAS  PubMed  Google Scholar 

  10. Varki, A. (1997) J. Clin. Invest., 99, 158–162.

    CAS  PubMed  Google Scholar 

  11. Usov, A. I., Smirnova, G. P., Bilan, M. I., and Shashkov, A. S. (1998) Bioorg. Khim., 24, 437–445.

    CAS  Google Scholar 

  12. Nifant’ev, N. E., Tsvetkov, Y. E., Shashkov, A. S., Kononov, L. O., Menshov, V. M., Tuzikov, A. B., and Bovin, N. V. (1996) J. Carbohydr. Chem., 15, 939–953.

    CAS  Google Scholar 

  13. Zemlyanukhina, T. V., Nifant’ev, N. E., Shashkov, A. S., Tsvetkov, Y. E., and Bovin, N. V. (1995) Carbohydr. Lett., 1, 277–284.

    CAS  Google Scholar 

  14. Bovin, N. V., Korchagina, E. Yu., Zemlyanukhina, T. V., Byramova, N. E., Galanina, O. E., Zemlyakov, A. E., Ivanov, A. E., Zubov, V. P., and Mochalova, L. V. (1993) Glycoconj. J., 10, 142–151.

    CAS  PubMed  Google Scholar 

  15. Priest, R., Nawaz, S., Green, P. M., and Bird, M. I. (1995) Biochem. Soc. Trans., 23, 162S.

    CAS  PubMed  Google Scholar 

  16. Game, S. M., Rajapurohit, P. K., Clifford, M., Bird, M. I., Priest, R., Bovin, N. V., Nifant’ev, N. E., O’Beirne, G., and Cook, N. D. (1998) Analyt. Biochem., 258, 127–135.

    CAS  PubMed  Google Scholar 

  17. Byzova, T. V., Romanov, Yu. A., Vlasik, T. N., and Mazurov, A. V. (1995) Biochemistry (Moscow), 60, 979–986.

    Google Scholar 

  18. Skinner, M. P., Fournier, D. J., Andrews, R. K., Gorman, J. J., Chesterman, C. N., and Berndt, M. C. (1989) Biochem. Biophys. Res. Commun., 164, 1373–1379.

    CAS  PubMed  Google Scholar 

  19. Mazurov, A. V., Vinogradov, D. V., Kabaeva, N. V., Antonova, G. N., Romanov, Yu. A., Vlasik, T. N., Antonov, A. S., and Smirnov, V. N. (1991) Thromb. Haemost., 66, 494–499.

    CAS  PubMed  Google Scholar 

  20. Miyauchi, H., Tanaka, M., Koike, H., Kawamura, N., and Hayashi, M. (1997) Bioorg. Med. Chem. Lett., 7, 985–988.

    CAS  Google Scholar 

  21. Pochechueva, T. V., Galanina, O. E., Bird, M. I., Nifantiev, N. E., and Bovin, N. V. (2002) Chem. Biol., 9, 1–20.

    PubMed  Google Scholar 

  22. Weitz-Schmidt, G., Stokmaier, D., Scheel, G., Nifant’ev, N. E., Tuzikov, A. B., and Bovin, N. V. (1996) Analyt. Biochem., 238, 184–190.

    CAS  PubMed  Google Scholar 

  23. Preobrazhenskaya, M. E., Berman, A. E., Mikhailov, V. I., Ushakova, N. A., Mazurov, A. V., Semenov, A. V., Usov, A. I., Nifant’ev, N. E., and Bovin, N. V. (1997) Biochem. Mol. Biol. Int., 43, 443–451.

    CAS  PubMed  Google Scholar 

  24. Mulligan, M. S., Paulson, J. C., DeFrees, S., Zheng, Z. L., Lowe, J. B., and Ward, P. A. (1993) Nature, 364, 149–151.

    CAS  PubMed  Google Scholar 

  25. Lowe, J. B., and Ward, P. A. (1997) J. Clin. Invest., 99, 822–826.

    CAS  PubMed  Google Scholar 

  26. Gordon, E. J., Strong, L. E., and Kiessling L. L. (1998) Bioorg. Med. Chem., 6, 1293–1299.

    CAS  PubMed  Google Scholar 

  27. Walcheck, B., Moore, K. L., McEver, R. P., and Kishimoto, T. K. (1996) J. Clin. Invest., 98, 1081–1087.

    CAS  PubMed  Google Scholar 

  28. Ley, K., Linnemann, G., Meinen, M., Stoolman, L. M., and Gaethgens, P. (1993) Blood, 81, 177–185.

    CAS  PubMed  Google Scholar 

  29. Alon, R., Hammer, D. A., and Springer, T. A. (1995) Nature, 374, 539–542.

    CAS  PubMed  Google Scholar 

  30. Nicholson, M. W., Barclay, A. N., Singer, M. S., Rosen, S. D., and van der Merwe, P. A. (1998) J. Biol. Chem., 273, 763–770.

    CAS  PubMed  Google Scholar 

  31. Jacob, G. S., Kirmaier, C., Abbas, S. Z., Howard, S. C., Setinger, C. N., Welply, J. K., and Scuddler, P. (1995) Biochemistry, 34, 1210–1217.

    CAS  PubMed  Google Scholar 

  32. Simanek, E. E., McGarvey, G. J., and Wong, C.-H. (1998) Chem. Rev., 98, 833–862.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Bovin.

Additional information

__________

Translated from Biokhimiya, Vol. 70, No. 4, 2005, pp. 523–532.

Original Russian Text Copyright © 2005 by Ushakova, Preobrazhenskaya, Bird, Priest, Semenov, Mazurov, Nifantiev, Pochechueva, Galanina, Bovin.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM04-071, June 27, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ushakova, N.A., Preobrazhenskaya, M.E., Bird, M.I. et al. Monomeric and Multimeric Blockers of Selectins: Comparison of in vitro and in vivo Activity. Biochemistry (Moscow) 70, 432–439 (2005). https://doi.org/10.1007/s10541-005-0133-0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10541-005-0133-0

Key words

Navigation