Skip to main content
Log in

Engineering of proteolytically stable NADPH-cytochrome P450 reductase

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

NADPH-cytochrome P450 reductase (CPR) is a membrane-bound flavoprotein that interacts with the membrane via its N-terminal hydrophobic sequence (residues 1–56). CPR is the main electron transfer component of hydroxylation reactions catalyzed by microsomal cytochrome P450s. The membrane-bound hydrophobic domain of NADPH-cytochrome P450 reductase is easily removed during limited proteolysis and is the subject of spontaneous digestion of membrane-binding fragment at the site Lys56-Ile57 by intracellular trypsin-like proteases that makes the flavoprotein very unstable during purification or expression in E. coli. The removal of the N-terminal hydrophobic sequence of NADPH-cytochrome P450 reductase results in loss of the ability of the flavoprotein to interact and transfer electrons to cytochrome P450. In the present work, by replacement of the lysine residue (Lys56) with Gln using site directed mutagenesis, we prepared the full-length flavoprotein mutant Lys56Gln stable to spontaneous proteolysis but possessing spectral and catalytic properties of the wild type flavoprotein. Limited proteolysis with trypsin and protease from Staphylococcus aureus of highly purified and membrane-bound Lys56Gln mutant of the flavoprotein as well as wild type NADPH-cytochrome P450 reductase allowed localization of some amino acids of the linker fragment of NADPH-cytochrome P450 reductase relative to the membrane. During prolong incubation or with increased trypsin ratio, the mutant form showed an alternative limited proteolysis pattern, indicating the partial accessibility of another site. Nevertheless, the membrane-bound mutant form is stable to trypsinolysis. Truncated forms of the flavoprotein (residues 46-676 of the mutant or 57-676 of wild type NADPH-cytochrome P450 reductase) are unable to transfer electrons to cytochrome P450c17 or P4503A4, confirming the importance of the N-terminal sequence for catalysis. Based on the results obtained in the present work, we suggest a scheme of structural topology of the N-terminal hydrophobic sequence of NADPH-cytochrome P450 reductase in the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Philips, A. H., and Langdon, R. G. (1962) J. Biol. Chem., 237, 2652–2660.

    Google Scholar 

  2. Dignam, J. D., and Strobel, H. W. (1975) Biophys. Res. Commun., 63, 845–852.

    Google Scholar 

  3. Vermilion, J. L., Ballow, D. P., Massey, V., and Coon, M. J. (1981) J. Biol. Chem., 256, 266–277.

    Google Scholar 

  4. Porter, T. D., and Kasper, C. B. (1986) Biochemistry, 25, 1682–1687.

    Google Scholar 

  5. Kaderbhai, M. A., Morgan, R., and Kaderbhai, N. N. (2003) Arch. Biochem. Biophys., 412, 259–266.

    Google Scholar 

  6. Kida, Y., Ohgiya, S., Mihara, K., and Sakaguchi, M. (1998) Arch. Biochem. Biophys., 351, 175–179.

    Google Scholar 

  7. Yasukochi, Y., and Masters, B. S. S. J. (1976) Biol. Chem., 251, 5337–5344.

    Google Scholar 

  8. Gum, J. R., and Strobel, H. W. (1981) J. Biol. Chem., 256, 7478–7486.

    Google Scholar 

  9. Hayashi, S., Omata, Y., Sakamoto, H., Hara, T., and Noguchi, M. (2003) Protein Exp. Purif., 29, 1–7.

    Google Scholar 

  10. Black, S. D., and Coon, M. J. (1982) J. Biol. Chem., 257, 5929–5938.

    Google Scholar 

  11. Makovec, T., and Breskvar, K. J. (2002) Steroid Biochem. Mol. Biol., 82, 89–96.

    Google Scholar 

  12. Guryev, O. L., Gilep, A. A., Usanov, S. A., and Estabrook, R. W. (2001) Biochemistry, 40, 5018–5031.

    Google Scholar 

  13. Gilep, A. A., Estabrook, R. W., and Usanov, S. A. (2003) Biochemistry (Moscow), 68, 86–98.

    Google Scholar 

  14. Omura, T., and Sato, R. (1964) J. Biol. Chem., 239, 2370–2378.

    Google Scholar 

  15. Porter, T. D., Wilson, T. E., and Kasper, C. B. (1987) Arch. Biochem. Biophys., 254, 353–367.

    Google Scholar 

  16. Laemmli, U. K. (1970) Nature, 227, 680–685.

    Google Scholar 

  17. Gilep, A. A., Guryev, O. L., Usanov, S. A., and Estabrook, R. W. (2001) Arch. Biochem. Biophys., 390, 215–221.

    Google Scholar 

  18. Gilep, A. A., Guryev, O. L., Usanov, S. A., and Estabrook, R. W. (2001) Biochem. Biophys. Res. Commun., 284, 937–941.

    Google Scholar 

  19. Djordjevic, S., Roberts, D. L., Wang, M., Shea, T., Camitta, M. G., Masters, B. S., and Kim, J. J. (1995) Proc. Natl. Acad. Sci. USA, 92, 3214–3218.

    Google Scholar 

  20. Zhao, Q., Smith, G., Modi, S., Paine, M., Wolf, R. C., Tew, D., Lian, L. Y., Primrose, W. U., Roberts, G. C., and Driessen, H. P. (1996) J. Struct. Biol., 116, 320–325.

    Google Scholar 

  21. Yabusaki, Y., Murakami, H., Sakaki, T., Shibata, M., and Ohkawa, H. (1988) DNA, 10, 701–711.

    Google Scholar 

  22. Bozic, D., Engel, J., and Brancaccio, A. (1998) Matrix Biol., 17, 495–500.

    Google Scholar 

  23. Karlish, S. J., Goldshleger, R., and Jorgensen, P. L. (1993) J. Biol. Chem., 268, 3471–3478.

    Google Scholar 

  24. Kuma, H., Shinde, A. A., Howren, T. R., and Jennings, M. L. (2002) Biochemistry, 41, 3380–3388.

    Google Scholar 

  25. Yost, C. S., Hedgpeth, J., and Lingappa, V. R. (1983) Cell, 3, 759–766.

    Google Scholar 

  26. Gafvelin, G., Sakaguchi, M., Andersson, H., and von Heijne, G. (1997) J. Biol. Chem., 272, 6119–6127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Usanov.

Additional information

Translated from Biokhimiya, Vol. 70, No. 3, 2005, pp. 438–446.

Original Russian Text Copyright © 2005 by Bonina, Gilep, Estabrook, Usanov.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM04-114, October 10, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonina, T.A., Gilep, A.A., Estabrook, R.W. et al. Engineering of proteolytically stable NADPH-cytochrome P450 reductase. Biochemistry (Moscow) 70, 357–365 (2005). https://doi.org/10.1007/s10541-005-0122-3

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10541-005-0122-3

Key words

Navigation