Skip to main content

Bacterial communication

Abstract

Recent research on bacteria and other microorganisms has provided interesting insights into the nature of life, cooperation, evolution, individuality or species. In this paper, I focus on the capacity of bacteria to produce molecules that are usually classified as ’signals’ and I defend two claims. First, I argue that certain interactions between bacteria should actually qualify as genuine forms of communication. Second, I use this case study to revise our general theories of signaling. Among other things, I argue that a plausible requirement for a state to qualify as a signal is that it is a minimal cause.

This is a preview of subscription content, access via your institution.

Notes

  1. For a defense of a non-etiological understanding of function in the context of bacterial communication, see Bich and Frick (2018).

  2. I would like to thank an anonymous reviewer for raising this question.

  3. It is worth stressing that the cooperation requirement is compatible with different evolutionary dynamics of QS populations in the face of defectors. It has been argued, for instance, that QS acts as a cheater restraint (Bruger et al. 2021).

  4. Indeed, we are probably relying on a ’functional sense of mechanism’ (Garson 2013), since the relevant parts and interactions must have been selected (or stabilized) for this effect and, according to a popular theory of function, this suffices for an entity to acquire a function.

  5. I would like to thank an anonymous referee for pressing me on this issue.

  6. Obviously, a lot depends here on how ’arbitrary’ is defined. In any event, my purpose is not to present a knock-down argument, but only to highlight some difficulties related to a popular way of understanding this notion.

References

  • Artiga M (forthcoming) Signals are minimal causes. Synthese

  • Baluska F, Ninkovic V (eds) (2010) Plant Communication from an Ecological Perspective. Signaling and Communication in Plants. Springer-Verlag, Berlin Heidelberg

  • Barlow M (2009) What antimicrobial resistance has taught us about horizontal gene transfer. Methods Mol Biol 532:397–411

    Article  Google Scholar 

  • Beagle SD, Lockless SW (2015) Electrical signalling goes bacterial. Nature 527(7576):44–145

    Article  Google Scholar 

  • Bich L, Frick R (2018) Synthetic modelling of biological communication: a theoretical and operational framework for the investigation of minimal life and cognition. Complex Syst 27(3):267–287

    Article  Google Scholar 

  • Boem F, Ferretti G, Zipoli Caiani S (2021) Out of our skull, in our skin: the microbiota-gut-brain axis and the extended cognition thesis. Biol Philos 36(2):14

    Article  Google Scholar 

  • Bruger, E. L., Snyder, D. J., Cooper, V. S., and Waters, C. M. (2021). Quorum sensing provides a molecular mechanism for evolution to tune and maintain investment in cooperation. The ISME J, 15(4):1236–1247. Number: 4 Publisher: Nature Publishing Group

  • Bruger EL, Waters CM (2016) Bacterial quorum sensing stabilizes cooperation by optimizing growth strategies. Appl Environ Microbiol 82(22):6498–6506

    Article  Google Scholar 

  • Burge T (2010) Origins of objectivity. Oxford University Press, Oxford

    Book  Google Scholar 

  • Butlin P (forthcoming) Representation and the active consumer. Synthese, pp 1–18

  • Cao R (2012) A teleosemantic approach to information in the brain. Biol Philos 27(1):49–71

    Article  Google Scholar 

  • Claessen D, Rozen DE, Kuipers OP, Søgaard-Andersen L, van Wezel GP (2014) Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat Rev Microbiol, 12(2):115–124. Number: 2 Publisher: Nature Publishing Group

  • Clarke E (2016) Levels of selection in biofilms: multispecies biofilms are not evolutionary individuals. Biol Philos 31(2):191–212

    Article  Google Scholar 

  • Dandekar AA, Chugani S, Greenberg EP (2012) Bacterial quorum sensing and metabolic incentives to cooperate. Science (N Y) 338(6104):264–266

    Article  Google Scholar 

  • Dessaux Y, Faure D (2018) Quorum sensing and quorum quenching in agrobacterium: a “Go/No Go System”? Genes 9(4)

  • Diggle S, Gardner A, West S, Griffin A (2007a) Evolutionary theory of bacterial quorum sensing: when is a signal not a signal? Philos Trans R Soc B 362(1483):1241–9

    Article  Google Scholar 

  • Diggle SP, Gardner A, West SA, Griffin AS (2007b) Evolutionary theory of bacterial quorum sensing: when is a signal not a signal? Philos Trans R Soc B Biol Sci 362(1483):1241–1249

    Article  Google Scholar 

  • Dunn AK, Handelsman J (2002) Toward an understanding of microbial communities through analysis of communication networks. Antonie Van Leeuwenhoek 30(4):565–274

    Article  Google Scholar 

  • Dworkin M, Kaiser D (1985) Cell interactions in myxobacterial growth and development. Science 230:18–24

    Article  Google Scholar 

  • Ereshefsky M, Pedroso M (2013) Biological individuality: the case of biofilms. Biol Philos 28(2):331–349

    Article  Google Scholar 

  • Faure YDECD (2011) Quorum sensing and quorum quenching in soil ecosystems. In: Witzany G (ed) Biocommunication in soil microorganisms. Springer, Berlin

    Google Scholar 

  • Foster KR (2005) Hamiltonian medicine: why the social lives of pathogens matter. Science 308(5726):1269–1270

    Article  Google Scholar 

  • Franklin LR (2007) Bacteria, sex, and systematics. Philos Sci 74(1):69–95

    Article  Google Scholar 

  • Frederix M, Downie AJ (2011) Quorum sensing: regulating the regulators. Adv Microb Physiol 58:23–80

    Article  Google Scholar 

  • Gallio M, Sturgill G, Rather P, Kylsten P (2002) A conserved mechanism for extracellular signaling in eukaryotes and prokaryotes. Proc Natl Acad Sci 99(19):12208–12213

    Article  Google Scholar 

  • Garson J (2013) The functional sense of mechanism. Philos Sci 80(3):317–333

    Article  Google Scholar 

  • Glennan S (2017) The new mechanical philosophy. Oxford University Press, Oxford

    Book  Google Scholar 

  • Gyles C, Boerlin P (2014) Horizontally transferred genetic elements and their role in pathogenesis of bacterial disease. Vet Pathol 51(2):328–40

    Article  Google Scholar 

  • Haddock SH, Moline MA, Case JF (2010) Bioluminescence in the Sea. Ann Rev Marine Sci 2(1):443–493. https://doi.org/10.1146/annurev-marine-120308-081028

    Article  Google Scholar 

  • Henke J, Bassler B (2004) Bacterial social engagements. Trends Cell Biol 14(11):648–656

    Article  Google Scholar 

  • Hughes DT, Sperandio V (2008) Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6(2):111–120

    Article  Google Scholar 

  • Husnik F, McCutcheon J (2017) Functional horizontal gene transfer from bacteria to eukaryotes. Nat Rev Microbiol 16(2):67–79

    Article  Google Scholar 

  • Ismail AS, Valastyan JS, Bassler BLA (2016) Host- produced autoinducer-2 mimic activates bacterial quorum sensing. Cell Host Microbe 19(4):470–480

    Article  Google Scholar 

  • Jemielita M, Wingreen NS, Bassler BL (2018) Quorum sensing controls Vibrio cholerae multicellular aggregate formation. eLife 7:e42057

    Article  Google Scholar 

  • José M-D, Marcos-Torres FJ, García-Bravo E, Moraleda-Muñoz A, Pérez J (2016) Myxobacteria: moving, killing, feeding, and surviving together. Front Microbiol 7:781

    Article  Google Scholar 

  • Kaiser D (2004) Signaling in myxobacteria. Annu Rev Microbiol 58:75–98

    Article  Google Scholar 

  • Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4(4):249–258

    Article  Google Scholar 

  • Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ (2002) Communication among oral bacteria. Microbiol Mol Biol Rev 66(3):486–505

    Article  Google Scholar 

  • Kolter R, Greenberg EP (2006) The superficial life of microbes. Nature 441:300–302

    Article  Google Scholar 

  • Lang J, Faure D (2014) Functions and regulation of quorum-sensing in Agrobacterium tumefaciens. Front Plant Sci 5:14

    Article  Google Scholar 

  • Lee J, Zhang L (2015) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6(1):26–41

    Article  Google Scholar 

  • Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tammy Schrenzel ATMD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320(5883):1647–1651

    Article  Google Scholar 

  • Lowery CA, Dickerson TJ, Janda KD (2008) Interspecies and interkingdom communication mediated by bacterial quorum sensing. Chem Soc Rev 37(7):1337–1346

    Article  Google Scholar 

  • Lyon P (2007) From quorum to cooperation: lessons from bacterial sociality for evolutionary theory. Stud Hist Philos Biol Biomed Sci 38:820–833

    Article  Google Scholar 

  • Machamer P, Darden L, Craver CF (2000) Thinking about mechanisms. Philos Sci 67(1):1–25

    Article  Google Scholar 

  • Maier J (2020) Abilities. In: Zalta EN (ed) Stanford Encyclopedia of Philosophy, Winter 2020 Edition. https://plato.stanford.edu/archives/win2020/entries/abilities/

  • Maróti G, Kondorosi E (2014) Nitrogen-fixing rhizobium-legume symbiosis: arepolyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis? Front Microbiol 5:1–6

    Google Scholar 

  • Maynard-Smith J, Harper D (2003) Animal signals: oxford series in ecology and evolution. Oxford University Press, Oxford

    Google Scholar 

  • McAnulla C, Edwards A, Sanchez-Contreras M, Sawers RG, Downie JA (2007) Quorum-sensing-regulated transcriptional initiation of plasmid transfer and replication genes in Rhizobium leguminosarum biovar viciae. Microbiol (Read Engl) 153(Pt 7):2074–2082

    Article  Google Scholar 

  • Mehmood A, Liu G, Wang X, Meng G, Wang C, Liu Y (2019) Fungal quorum-sensing molecules and inhibitors with potential antifungal activity: a review. Molecules 24(10)

  • Miller D, Lamont B (2019) Oral mucosal immunity and microbiome, chapter signaling systems in oral bacteria. Springer, Berlin, pp 27–44

    Book  Google Scholar 

  • Miller M, Bassler B (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–99

    Article  Google Scholar 

  • Millikan RG (1984) Language: thought and other biological categories. The MIT Press, Cambridge

    Google Scholar 

  • Miyashiro T, Ruby EG (2012) Shedding light on bioluminescence regulation in Vibrio fischeri. Mol Microbiol 84(5):795–806

    Article  Google Scholar 

  • Moradali MF, Ghods S, Rehm BHA (2017) Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 7:39

    Article  Google Scholar 

  • Mukherjee S, Bassler B (2019) Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol 17(6):371–382

    Article  Google Scholar 

  • Murray J (2011) Invasion by invitation: Rhizobial infection in legumes. Mol Plant Microbe Interact 24(6):583–606

    Article  Google Scholar 

  • Neander K (1995) Misrepresenting and malfunctioning. Philos Stud 79:109–141

    Article  Google Scholar 

  • Neander K (2017) A mark of the mental. MIT Press, Cambridge

    Book  Google Scholar 

  • Norman A, Hansen LH, Sørensen SJ (2009) Conjugative plasmids: vessels of the communal gene pool. Philos Trans R Soc Lond B Biol Sci 364(1527):2275–89

    Article  Google Scholar 

  • Oldroyd G (2013) Evolving perceptual categories. Nat Rev Micobiol 11:252–263

    Article  Google Scholar 

  • O’Malley MA (2014) Philosophy of microbiology. Cambridge University Press, Cambridge

  • O’Malley MA, Parke EC (2020) Philosophy of Microbiology. In: Zalta EN (ed) The Stanford Encyclopedia of Philosophy (Fall 2020 Edition). https://plato.stanford.edu/archives/fall2020/entries/microbiology/

  • Pacheco JM, Vasconcelos VV, Santos FC, Skyrms B (2015) Co-evolutionary dynamics of collective action with signaling for a quorum. PLOS Comput Biol 11(2):e1004101

    Article  Google Scholar 

  • Padder SA, Prasad R, Shah AH (2018) Quorum sensing: a less known mode of communication among fungi. Microbiol Res 210:51–58

    Article  Google Scholar 

  • Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in gram-negative bacteria. Microbiol Res 14(9):576–88

    Google Scholar 

  • Papineau D (1984) Representation and explanation. Philos Sci 5(4):550–572

    Article  Google Scholar 

  • Parke E (2013) What could arsenic bacteria teach us about life? Biol Philos 82(2):205–218

    Article  Google Scholar 

  • Pesci EC, Pearson JP, Seed PC, Iglewski BH (1997) Regulation of las and rhl quorum sensing in pseudomonas aeruginosa. J Bacteriol 179:3127–3132

    Article  Google Scholar 

  • Planer RJ, Kalkman D (forthcoming) Arbitrary Signals and Cognitive Complexity. British J Philos Sci

  • Popat R, Pollitt EJG, Harrison F, Naghra H, Hong K-W, Chan K-G, Griffin AS, Williams P, Brown SP, West SA, Diggle SP (2015) Conflict of interest and signal interference lead to the breakdown of honest signaling. Evolution 69(9):2371–2383

    Article  Google Scholar 

  • Prindle A, Liu J, Asally M, Ly S, García-Ojalvo J (2015) Ion channels enable electrical communication in bacterial communities. Nature 527(59):59–63

    Article  Google Scholar 

  • Ramsey W (2007) Representation reconsidered. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Redfield R (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10(8):365–370

    Article  Google Scholar 

  • Rezzonico F, Duffy B (2008) Lack of genomic evidence of AI-2 receptors suggests a non-quorum sensing role for luxS in most bacteria. BMC Microbiol 8:154

    Article  Google Scholar 

  • Rupert R (1996) Lessons from a cooperative, bacterial-animal association: the vibrio fischeri-euprymna scolopes light organ symbiosis. Annu Rev Microbiol 50:591–624

    Article  Google Scholar 

  • Sanchez-Contreras M, Bauer WD, Gao M, Robinson JB, Allan Downie J (2007) Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Philos Trans R Soc B Biol Sci 362(1483):1149–1163

    Article  Google Scholar 

  • Schuster M, Greenberg EP (2006) A network of networks: quorum-sensing gene regulation in pseudomonas aeruginosa. Int J Med Microbiol 296(2–3):73–81

    Article  Google Scholar 

  • Seyfarth RM, Cheney DL, Marler P (1980) Vervet monkey alarm calls: semantic communication in a free-ranging primate. Anim Behav 28(4):1070–1094

    Article  Google Scholar 

  • Shapiro JA (1988) Bacteria as multicellular organisms. Sci Am 256:82–89

    Article  Google Scholar 

  • Shapiro JA (2007) Bacteria are small but not stupid: cognition, natural genetic engineering and socio-bacteriology. Stud Hist Philos Sci Part C 38:807–819

    Google Scholar 

  • Shulte P (2015) Perceptual representations: a teleosemantic answer to the breadth-of-application problem. Biol Philos 31(1):119–136

    Article  Google Scholar 

  • Skyrms B (2010) Signals: Levolution, learning, and information. Oxford University Press, Oxford

    Book  Google Scholar 

  • Smith J, Fratamico P, Yan X (2011) Eavesdropping by bacteria: The role of sdia in escherichia coli and salmonella enterica serovar typhimurium quorum sensing. Foodborne Pathog Dis 8(2):169–78

    Article  Google Scholar 

  • Soucy S, Huang J, Gogarten J (2015) Horizontal gene transfer: building the web of life. Nat Rev Genet 16(8):472–82

    Article  Google Scholar 

  • Spormann AM (1999) Gliding motility in bacteria: insights from studies of Myxococcus xanthus. Microbiol Mol Biol Rev 63(3):621–641

    Article  Google Scholar 

  • Stacy AR, Diggle SP, Whiteley M (2012) Rules of engagement: defining bacterial communication. Curr Opin Microbiol 15(2):155–161

    Article  Google Scholar 

  • Stegmann U (2009) A consumer based teleosemantics for animal signals. Philos Sci 76(5):864–875

    Article  Google Scholar 

  • Stegmann UE (2004) The arbitrariness of the genetic code. Biol Philos 19(2):205–222

    Article  Google Scholar 

  • Sterelny K (1995) Basic minds. Philos Perspect AI Connect Philos Psychol 9:251–270

    Article  Google Scholar 

  • Straight PD, Kolter R (2009) Interspecies chemical communication in bacterial development. Annu Rev Microbiol 63:99–118

    Article  Google Scholar 

  • Sun J, Daniel R, Wagner-Doebler I, Zeng A (2004) Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol Biol 4(36)

  • Velicer GJ (2003) Social strife in the microbial world. Trends Microbiol 11(7):330–337

    Article  Google Scholar 

  • Velicer GJ, Kroos L, Lenski RE (2000) Developmental cheating in the social bacterium Myxococcus xanthus. Nature 404(6778):598–601

    Article  Google Scholar 

  • von Frisch K (1967) The Dance Language and Orientation of Bees. The Belknap Press of Harvard University Press, Cambridge, Mass

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  Google Scholar 

  • West SA, Diggle SP, Buckling A, Gardner A, Griffin AS (2007) The social lives of microbes. Ann Rev Ecol Evol Syst 38(1):53–77. https://doi.org/10.1146/annurev.ecolsys.38.091206.095740

    Article  Google Scholar 

  • Whiteley M, Diggle SP, Greenberg EP (2017) Progress in and promise of bacterial quorum sensing research. Nature 551(7680):313–320

    Article  Google Scholar 

  • Winans SC (2002) Bacterial esperanto. Nat Struct Biol 9(2):83–84

    Article  Google Scholar 

  • Witzany G (2011a) Introduction: key level in biocummunication of bacteria. In: Witzany G (ed) Biocommunication in Soil Microorganisms. Springer, Berlin

    Chapter  Google Scholar 

  • Witzany G (2011b) Why communication of soil microorganisms? In: Witzany G (ed) Biocommunication in soil microorganisms. Springer, Berlin

    Chapter  Google Scholar 

  • Xavier JB, Kim W, Foster KR (2011) A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Mol Microbiol 79(1):166–179. https://doi.org/10.1111/j.1365-2958.2010.07436.x

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Xabier E. Barandiaran, Leonardo Bich, Mihnea Capraru, Arantza Etxeberria, John Horden, Kepa Ruiz-Mirazo, Manolo Martínez, Alvaro Moreno, Samir Okasha, Ezequiel A. Di Paolo, Jon Umerez, Miguel Ángel Sebastián, Nicholas Shea and the audiences at the ISHPSSB conference in Oslo (2019) and IAS-Research Group Seminar (2020) at the University of the Basque Country. Financial support was provided by the MICIU project ’Varieties of Information’ (PGC2018-101425-B-I00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Artiga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Artiga, M. Bacterial communication. Biol Philos 36, 39 (2021). https://doi.org/10.1007/s10539-021-09814-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10539-021-09814-1

Keywords

  • Microbiology
  • Bacteria
  • Quorum sensing
  • Signaling
  • Signal
  • Function
  • Teleosemantics
  • Teleology
  • Sender
  • Receiver