Skip to main content

Measurement in biology is methodized by theory

Abstract

We characterize access to empirical objects in biology from a theoretical perspective. Unlike objects in current physical theories, biological objects are the result of a history and their variations continue to generate a history. This property is the starting point of our concept of measurement. We argue that biological measurement is relative to a natural history which is shared by the different objects subjected to the measurement and is more or less constrained by biologists. We call symmetrization the theoretical and often concrete operation which leads to considering biological objects as equivalent in a measurement. Last, we use our notion of measurement to analyze research strategies. Some strategies aim to bring biology closer to the epistemology of physical theories, by studying objects as similar as possible, while others build on biological diversity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    Historically, the definition of a meter has first been theoretical, then it used a standard prototype. The current definition is again theoretical.

References

  1. Abolins SR, Pocok M, Hafalla J, Riley E, Viney M (2010) Measures of immune function of wild mice, Mus musculus. Mol Ecol 20(5):881–892. https://doi.org/10.1111/j.1365-294X.2010.04910.x

    Article  Google Scholar 

  2. Bailly F, Longo G (2011) Mathematics and the natural sciences: the physical singularity of life. Imperial College Press, London

    Book  Google Scholar 

  3. Baker M (2016) 1500 Scientists lift the lid on reproducibility. Nature 533:452–454. https://doi.org/10.1038/533452a

    Article  Google Scholar 

  4. Baxendale M (2018) Mapping the continuum of research strategies. Synthese. https://doi.org/10.1007/s11229-018-1683-1

    Article  Google Scholar 

  5. Beatty J (1995) The evolutionary contingency thesis. In: Wolters G, Lennox J (eds) Concepts, theories and rationality in the biology. University of Pittsburgh Press, Pittsburgh, pp 45–81

    Google Scholar 

  6. Begley CG, Ellis LM (2012) Drug development: raise standards for preclinical cancer research. Nature 483(7391):531–533. https://doi.org/10.1038/483531a

    Article  Google Scholar 

  7. Begley C, Ioannidis J (2014) Reproducibility in science. Circ Res 116(1):116–126. https://doi.org/10.1161/CIRCRESAHA.114.303819

    Article  Google Scholar 

  8. Bolland MJ, Avenell A, Gamble GD, Grey A (2016) Systematic review and statistical analysis of the integrity of 33 randomized controlled trials. Neurology. https://doi.org/10.1212/WNL.0000000000003387

    Article  Google Scholar 

  9. Braun E (2015) The unforeseen challenge: from genotype-to-phenotype in cell populations. Rep Prog Phys 78(3):036602. https://doi.org/10.1088/0034-4885/78/3/036602

    Article  Google Scholar 

  10. Cai L, Friedman N, Xie X (2006) Stochastic protein expression in individual cells at the single molecule level. Nature 440(7082):358–362. https://doi.org/10.1038/nature04599

    Article  Google Scholar 

  11. Chang H (2004) Inventing temperature: measurement and scientific progress. Oxford University Press, Oxford

    Book  Google Scholar 

  12. Chia R, Achilli F, Festing M, Fisher E (2005) The origins and uses of mouse outbred stocks. Nat Genet 37(11):1181. https://doi.org/10.1038/ng1665

    Article  Google Scholar 

  13. CZN International (1999) International code of zoological nomenclature. International Trust for Zoological Nomenclature, London

    Google Scholar 

  14. Danchin E, Pocheville A, Rey O, Pujol B, Blanchet S (2019) Epigenetically facilitated mutational assimilation: epigenetics as a hub within the inclusive evolutionary synthesis. Biol Rev 94:259–282

    Article  Google Scholar 

  15. de Queiroz K (1992) Phylogenetic definitions and taxonomic philosophy. Biol Philos 7(3):295–313. https://doi.org/10.1007/BF00129972

    Article  Google Scholar 

  16. Dudley J, Golovkina T, Ross S (2016) Lessons learned from mouse mammary tumor virus in animal models. ILAR J 57(1):12–23. https://doi.org/10.1093/ilar/ilv044

    Article  Google Scholar 

  17. Festing M (2014) Evidence should trump intuition by preferring inbred strains to outbred stocks in preclinical research. ILAR J 55(3):399–404. https://doi.org/10.1093/ilar/ilu036

    Article  Google Scholar 

  18. Feynman R, Gleick J (1967) The character of physical law. MIT Press, Cambridge

    Google Scholar 

  19. Gilbert SF (2014) A holobiont birth narrative: the epigenetic transmission of the human microbiome. Front Genet. https://doi.org/10.3389/fgene.2014.00282

    Article  Google Scholar 

  20. Gilbert SF, Epel D (2009) Ecological developmental biology: integrating epigenetics, medicine, and evolution. Sinauer Associates Sunderland, Sunderland

    Google Scholar 

  21. Gillies D (2012) Philosophical theories of probability. Routledge, London

    Book  Google Scholar 

  22. Gould S (2002) The structure of evolutionary theory. Harvard University Press, Cambridge

    Book  Google Scholar 

  23. Grandcolas P (2017) Loosing the connection between the observation and the specimen: a by-product of the digital era or a trend inherited from general biology? Bionomina 12(1):57–62. https://doi.org/10.11646/bionomina.12.1.7

    Article  Google Scholar 

  24. Gross V, Luft F (2003) Exercising restraint in measuring blood pressure in conscious mice. Hypertension 41(4):879–881. https://doi.org/10.1161/01.HYP.0000060866.69947.D1

    Article  Google Scholar 

  25. Heindel J, Newbold R, Bucher J, Camacho L, Delclos KB, Lewis SM, Vanlandingham M, Churchwell MI, Twaddle NC, McLellen M, Chidambaram M, Bryant M, Woodling K, da Costa GG, Ferguson SA, Flaws J, Howard PC, Walker NJ, Zoeller RT, Fostel J, Favaro C, Schug TT (2015) NIEHS/FDA CLARITY-BPA research program update. Reprod Toxicol 58:33–44. https://doi.org/10.1016/j.reprotox.2015.07.075

    Article  Google Scholar 

  26. Houle D, Pélabon C, Wagner GP, Hansen TF (2011) Measurement and meaning in biology. Q Rev Biol 86(1):3–34. https://doi.org/10.1086/658408

    Article  Google Scholar 

  27. Huneman P (2018) Diversifying the picture of explanations in biological sciences: ways of combining topology with mechanisms. Synthese 195(1):115–146. https://doi.org/10.1007/s11229-015-0808-z

    Article  Google Scholar 

  28. Isaacs JT (1986) Genetic control of resistance to chemically induced mammary adenocarcinogenesis in the rat. Cancer Res 46(8):3958–3963

    Google Scholar 

  29. Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84(2):131–176. https://doi.org/10.1086/598822

    Article  Google Scholar 

  30. Jablonka E, Lamb MJ, Zeligowski A (2014) Evolution in four dimensions, revised edition: genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT Press, London

    Book  Google Scholar 

  31. Jensen VS, Porsgaard T, Lykkesfeldt J, Hvid H (2016) Rodent model choice has major impact on variability of standard preclinical readouts associated with diabetes and obesity research. Am J Transl Res 8(8):3574

    Google Scholar 

  32. Johnson PD, Besselsen DG (2002) Practical aspects of experimental design in animal research. ILAR J 43(4):202–206. https://doi.org/10.1093/ilar.43.4.202

    Article  Google Scholar 

  33. Kohler RE (1994) Lords of the fly: drosophila genetics and the experimental life. University of Chicago Press, Chicago

    Google Scholar 

  34. Lancet (2018) Uk life science research: time to burst the biomedical bubble. Lancet 392(10143):187. https://doi.org/10.1016/S0140-6736(18)31609-X

    Article  Google Scholar 

  35. Lecointre G, Le Guyader H (2006) The tree of life: a phylogenetic classification, vol 20. Harvard University Press, Cambridge

    Google Scholar 

  36. Leonelli S (2014) What difference does quantity make? On the epistemology of big data in biology. Big Data Soc 1(1):2053951714534395. https://doi.org/10.1177/2053951714534395

    Article  Google Scholar 

  37. Lindner A, Madden R, Demarez A, Stewart E, Taddei F (2008) Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc Natl Acad Sci 105(8):3076–3081. https://doi.org/10.1073/pnas.0708931105

    Article  Google Scholar 

  38. Longo G, Montévil M (2011a) From physics to biology by extending criticality and symmetry breakings. Prog Biophys Mol Biol 106(2):340–347. https://doi.org/10.1016/j.pbiomolbio.2011.03.005

    Article  Google Scholar 

  39. Longo G, Montévil M (2011b) Protention and retention in biological systems. Theory Biosci 130:107–117. https://doi.org/10.1007/s12064-010-0116-6

    Article  Google Scholar 

  40. Longo G, Montévil M (2014) Perspectives on organisms: biological time, symmetries and singularities. Lect Notes Morphog. https://doi.org/10.1007/978-3-642-35938-5

    Article  Google Scholar 

  41. Longo G, Montévil M (2017) Comparing symmetries in models and simulations. Springer, Berlin. https://doi.org/10.1007/978-3-319-30526-4

    Book  Google Scholar 

  42. McNeill J, Barrie F, Buck W, Demoulin V, Greuter W, Hawksworth D, Herendeen P, Knapp S, Marhold K, Prado J et al (2012) International code of nomenclature for algae, fungi and plants. Koeltz Scientific Books, Konigstein

    Google Scholar 

  43. Mogil JS, Wilson SG, Bon K, Lee SE, Chung K, Raber P, Pieper JO, Hain HS, Belknap JK, Hubert L, Elmer GI, Chung JM, Devor M (1999) Heritability of nociception I: responses of 11 inbred mouse strains on 12 measures of nociception. Pain 80(1):67–82. https://doi.org/10.1016/S0304-3959(98)00197-3

    Article  Google Scholar 

  44. Montévil M (2018) Possibility spaces and the notion of novelty: from music to biology. Synthese. https://doi.org/10.1007/s11229-017-1668-5

    Article  Google Scholar 

  45. Montévil M, Mossio M (2015) Biological organisation as closure of constraints. J Theor Biol 372:179–191. https://doi.org/10.1016/j.jtbi.2015.02.029

    Article  Google Scholar 

  46. Montévil M, Mossio M, Pocheville A, Longo G (2016) Theoretical principles for biology: variation. Prog Biophys Mol Biol 122(1):36–50. https://doi.org/10.1016/j.pbiomolbio.2016.08.005

    Article  Google Scholar 

  47. Morgan M (2002) Experiments without material intervention: model experiments, virtual experiments and virtually experiments. Pittsburgh University Press, Pittsburgh

    Google Scholar 

  48. Mossio M, Montévil M, Longo G (2016) Theoretical principles for biology: organization. Prog Biophys Mol Biol 122(1):24–35. https://doi.org/10.1016/j.pbiomolbio.2016.07.005

    Article  Google Scholar 

  49. Mugur-Schächter M (2002) Objectivity and descriptional relativities. Found Sci 7:73–180. https://doi.org/10.1023/A:1016095424229

    Article  Google Scholar 

  50. Nadin M (2017) Rethinking the experiment: necessary (r) evolution. AI Soc. https://doi.org/10.1007/s00146-017-0705-8

    Article  Google Scholar 

  51. Patterson F, Linden E (1981) The education of Koko. Holt, Rinehart, and Winston, New York

    Google Scholar 

  52. Ryan BC, Vandenbergh JG (2002) Intrauterine position effects. Neurosci Biobehav Rev 26(6):665–678. https://doi.org/10.1016/S0149-7634(02)00038-6

    Article  Google Scholar 

  53. Sacca R, Elder B, Wasson K (2013) The C57BL/6 mouse: the role of the C57BL/6N mouse in the creation of future genetically engineered models. Charles River Laboratories International Inc., New York

    Google Scholar 

  54. Salam A (1990) Unification of fundamental forces. Cambridge University Press, Cambridge

    Book  Google Scholar 

  55. Schrödinger E (1944) What is life?. Cambridge University Press, Cambridge

    Google Scholar 

  56. Simpson EM, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp JJ (1997) Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat Genet 16(1):19. https://doi.org/10.1038/ng0597-19

    Article  Google Scholar 

  57. Solter D (1998) Dolly is a clone—and no longer alone. Nature 394(6691):315

    Article  Google Scholar 

  58. Soto AM, Justicia H, Wray JW, Sonnenschein C (1991) p-Nonyl-phenol: an estrogenic xenobiotic released from “modified” polystyrene. Environ Health Perspect 92:167–173. https://doi.org/10.1289/ehp.9192167

    Article  Google Scholar 

  59. Soto AM, Longo G, Montévil M, Sonnenschein C (2016a) The biological default state of cell proliferation with variation and motility, a fundamental principle for a theory of organisms. Prog Biophys Mol Biol 122(1):16–23. https://doi.org/10.1016/j.pbiomolbio.2016.06.006

    Article  Google Scholar 

  60. Soto AM, Longo G, Noble D, Perret N, Montévil M, Sonnenschein C, Mossio M, Pocheville A, Miquel PA, Hwang SY et al (2016b) From the century of the genome to the century of the organism: new theoretical approaches. Prog Biophys Mol Biol 122:1–82

    Article  Google Scholar 

  61. Spearow JL, Doemeny P, Sera R, Leffler R, Barkley M (1999) Genetic variation in susceptibility to endocrine disruption by estrogen in mice. Science 285(5431):1259–1261

    Article  Google Scholar 

  62. Stewart E, Madden R, Paul G, Taddei F (2005) Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol 3(2):e45. https://doi.org/10.1371/journal.pbio.0030045

    Article  Google Scholar 

  63. Susiarjo M, Hassold TJ, Freeman E, Hunt PA (2007) Bisphenol a exposure in utero disrupts early oogenesis in the mouse. PLoS Genet 3(1):e5. https://doi.org/10.1371/journal.pgen.0030005

    Article  Google Scholar 

  64. Van Fraassen B (1989) Laws and symmetry. Oxford University Press, Oxford

    Book  Google Scholar 

  65. Wagner GP (2010) The measurement theory of fitness. Evolution 64(5):1358–1376. https://doi.org/10.1111/j.1558-5646.2009.00909.x

    Article  Google Scholar 

  66. Weber M (2004) Philosophy of experimental biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  67. West B (2006) Where medicine went wrong: rediscovering the path to complexity. World Scientific, Teaneck

    Book  Google Scholar 

  68. West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  69. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810–813. https://doi.org/10.1038/385810a0

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to Ana Soto, Giuseppe Longo, Carlos Sonnenschein, Guillaume Lecointre, Matteo Mossio, Arnaud Pocheville and Véronique Thomas-Vaslin for their comments on previous versions of this article and helpful discussions. I also thank the two anonymous reviewers and the editor for their candid comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maël Montévil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Montévil, M. Measurement in biology is methodized by theory. Biol Philos 34, 35 (2019). https://doi.org/10.1007/s10539-019-9687-x

Download citation

Keywords

  • Biological measurement
  • Experiments
  • Evolution
  • Systematics
  • Strains
  • Symmetry