CRISPR-Cas immunity: beyond nonself and defence

Abstract

In this commentary of Koonin’s target paper, we defend an extended view of CRISPR-Cas immunity by arguing that CRISPR-Cas includes, but cannot be reduced to, defence against nonself. CRISPR-Cas systems can target endogenous elements (for example in DNA repair) and tolerate exogenous elements (for example some phages). We conclude that the vocabulary of “defence” and “nonself” might be misleading when describing CRISPR-Cas systems.

This is a preview of subscription content, log in to check access.

Notes

  1. 1.

    In some cases, including CRISPR-Cas systems, tolerated foreign elements can even be transmitted to the offspring, allowing adaptations at the level of populations and/or species.

References

  1. Babu M, Beloglazova N, Flick R et al (2010) A dual function of the CRISPR–Cas system in bacterial antivirus immunity and DNA repair. Mol Microbiol 79:484–502. https://doi.org/10.1111/j.1365-2958.2010.07465.x

    Article  Google Scholar 

  2. Barrangou R, Horvath P (2017) A decade of discovery: CRISPR functions and applications. Nat Microbiol 2:17092. https://doi.org/10.1038/nmicrobiol.2017.92

    Article  Google Scholar 

  3. Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712. https://doi.org/10.1126/science.1138140

    Article  Google Scholar 

  4. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading, England) 151:2551–2561. https://doi.org/10.1099/mic.0.28048-0

    Article  Google Scholar 

  5. Bouchery T, Harris NL (2017) Specific repair by discerning macrophages. Science 356:1014. https://doi.org/10.1126/science.aan6782

    Article  Google Scholar 

  6. Bretscher P, Cohn M (1970) A theory of self–nonself discrimination. Science 169:1042–1049

    Article  Google Scholar 

  7. Burnet FM (1960) Immunological recognition of self. In: Nobel Lectures in Physiology or Medicine, vol 3, pp 689–701

  8. Clark WR (2008) In defense of self: how the immune system really works. Oxford University Press, New York

    Google Scholar 

  9. Cohen IR (2000) Discrimination and dialogue in the immune system. Semin Immunol 12:215–219. https://doi.org/10.1006/smim.2000.0234 (discussion 257–344)

    Article  Google Scholar 

  10. Donaldson GP, Ladinsky MS, Yu KB et al (2018) Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360:795–800. https://doi.org/10.1126/science.aaq0926

    Article  Google Scholar 

  11. Eming SA, Wynn TA, Martin P (2017) Inflammation and metabolism in tissue repair and regeneration. Science 356:1026–1030. https://doi.org/10.1126/science.aam7928

    Article  Google Scholar 

  12. Goldberg GW, Marraffini LA (2015) Resistance and tolerance to foreign elements by prokaryotic immune systems—curating the genome. Nat Rev Immunol 15:717–724. https://doi.org/10.1038/nri3910

    Article  Google Scholar 

  13. Goldberg GW, Jiang W, Bikard D, Marraffini LA (2014) Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting. Nature 514:633–637. https://doi.org/10.1038/nature13637

    Article  Google Scholar 

  14. Gordon S, Plüddemann A (2018) Macrophage clearance of apoptotic cells: a critical assessment. Front Immunol 9:127. https://doi.org/10.3389/fimmu.2018.00127

    Article  Google Scholar 

  15. Hayday AC (2009) Gammadelta T cells and the lymphoid stress-surveillance response. Immunity 31:184–196. https://doi.org/10.1016/j.immuni.2009.08.006

    Article  Google Scholar 

  16. Hille F, Richter H, Wong SP et al (2018) The biology of CRISPR-Cas: backward and forward. Cell 172:1239–1259. https://doi.org/10.1016/j.cell.2017.11.032

    Article  Google Scholar 

  17. Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118

    Article  Google Scholar 

  18. Ishino Y, Krupovic M, Forterre P (2018) History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol 200:e00580. https://doi.org/10.1128/jb.00580-17

    Article  Google Scholar 

  19. Koonin EV (2017) Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: common ancestry vs convergence. Biol Direct 12:5. https://doi.org/10.1186/s13062-017-0177-2

    Article  Google Scholar 

  20. Koonin EV (2018, this issue) CRISPR: a new principle of genome engineering linked to conceptual shifts in evolutionary biology. Biol Philos. https://doi.org/10.1007/s10539-018-9658-7

    Article  Google Scholar 

  21. Koonin EV, Krupovic M (2015) Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat Rev Genet 16:184–192. https://doi.org/10.1038/nrg3859

    Article  Google Scholar 

  22. Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78. https://doi.org/10.1016/j.mib.2017.05.008

    Article  Google Scholar 

  23. Ledford H (2016) The unsung heroes of CRISPR. Nature 535:342–344. https://doi.org/10.1038/535342a

    Article  Google Scholar 

  24. Levy A, Goren MG, Yosef I et al (2015) CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520:505–510. https://doi.org/10.1038/nature14302

    Article  Google Scholar 

  25. Makarova KS, Aravind L, Grishin NV et al (2002) A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res 30:482–496

    Article  Google Scholar 

  26. Makarova KS, Grishin NV, Shabalina SA et al (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:7. https://doi.org/10.1186/1745-6150-1-7

    Article  Google Scholar 

  27. Makarova KS, Haft DH, Barrangou R et al (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477. https://doi.org/10.1038/nrmicro2577

    Article  Google Scholar 

  28. Marraffini LA, Sontheimer EJ (2010) Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463:568–571. https://doi.org/10.1038/nature08703

    Article  Google Scholar 

  29. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045. https://doi.org/10.1146/annurev.iy.12.040194.005015

    Article  Google Scholar 

  30. Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182. https://doi.org/10.1007/s00239-004-0046-3

    Article  Google Scholar 

  31. Morange M (2015) What history tells us XXXVII. CRISPR-Cas: the discovery of an immune system in prokaryotes. J Biosci 40:221–223

    Article  Google Scholar 

  32. Nuñez JK, Harrington LB, Kranzusch PJ et al (2015) Foreign DNA capture during CRISPR-Cas adaptive immunity. Nature 527:535–538. https://doi.org/10.1038/nature15760

    Article  Google Scholar 

  33. Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology (Reading, England) 151:653–663. https://doi.org/10.1099/mic.0.27437-0

    Article  Google Scholar 

  34. Pradeu T (2012) The limits of the self: immunology and biological identity. Oxford University Press, New York

    Google Scholar 

  35. Pradeu T, Carosella E (2006) On the definition of a criterion of immunogenicity. Proc Natl Acad Sci USA 103:17858–17861

    Article  Google Scholar 

  36. Savill J, Fadok V (2000) Corpse clearance defines the meaning of cell death. Nature 407:784–788. https://doi.org/10.1038/35037722

    Article  Google Scholar 

  37. Shabalina SA, Koonin EV (2008) Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23:578–587. https://doi.org/10.1016/j.tree.2008.06.005

    Article  Google Scholar 

  38. Stern A, Keren L, Wurtzel O et al (2010) Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet 26:335–340. https://doi.org/10.1016/j.tig.2010.05.008

    Article  Google Scholar 

  39. Tauber AI (1994) The immune self: theory or metaphor?. Cambridge University Press, Cambridge

    Google Scholar 

  40. Westra ER, Buckling A, Fineran PC (2014) CRISPR-Cas systems: beyond adaptive immunity. Nat Rev Microbiol 12:317–326. https://doi.org/10.1038/nrmicro3241

    Article  Google Scholar 

  41. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455. https://doi.org/10.1038/nature12034

    Article  Google Scholar 

  42. Yu W, Jiang N, Ebert PJR et al (2015) Clonal deletion prunes but does not eliminate self-specific αβ CD8(+) T lymphocytes. Immunity 42:929–941. https://doi.org/10.1016/j.immuni.2015.05.001

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Michael Weisberg for the opportunity to write about the philosophical and immunological dimensions of the CRISPR-Cas system, and Eugene Koonin for his extremely innovative and stimulating ideas.

Funding

TP has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme—Grant Agreement no. 637647—IDEM.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Pradeu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pradeu, T., Moreau, J. CRISPR-Cas immunity: beyond nonself and defence. Biol Philos 34, 6 (2019). https://doi.org/10.1007/s10539-018-9665-8

Download citation

Keywords

  • CRISPR-Cas
  • Immune system
  • Self
  • Nonself
  • Phage
  • Virus
  • Defence
  • Repair
  • Autoimmunity
  • Tolerance
  • Bacteria
  • Archaea
  • Microbiota