Advertisement

Biology & Philosophy

, 34:6 | Cite as

CRISPR-Cas immunity: beyond nonself and defence

  • Thomas PradeuEmail author
  • Jean-François Moreau
Article
  • 71 Downloads

Abstract

In this commentary of Koonin’s target paper, we defend an extended view of CRISPR-Cas immunity by arguing that CRISPR-Cas includes, but cannot be reduced to, defence against nonself. CRISPR-Cas systems can target endogenous elements (for example in DNA repair) and tolerate exogenous elements (for example some phages). We conclude that the vocabulary of “defence” and “nonself” might be misleading when describing CRISPR-Cas systems.

Keywords

CRISPR-Cas Immune system Self Nonself Phage Virus Defence Repair Autoimmunity Tolerance Bacteria Archaea Microbiota 

Notes

Acknowledgements

We would like to thank Michael Weisberg for the opportunity to write about the philosophical and immunological dimensions of the CRISPR-Cas system, and Eugene Koonin for his extremely innovative and stimulating ideas.

Funding

TP has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme—Grant Agreement no. 637647—IDEM.

References

  1. Babu M, Beloglazova N, Flick R et al (2010) A dual function of the CRISPR–Cas system in bacterial antivirus immunity and DNA repair. Mol Microbiol 79:484–502.  https://doi.org/10.1111/j.1365-2958.2010.07465.x CrossRefGoogle Scholar
  2. Barrangou R, Horvath P (2017) A decade of discovery: CRISPR functions and applications. Nat Microbiol 2:17092.  https://doi.org/10.1038/nmicrobiol.2017.92 CrossRefGoogle Scholar
  3. Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712.  https://doi.org/10.1126/science.1138140 CrossRefGoogle Scholar
  4. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading, England) 151:2551–2561.  https://doi.org/10.1099/mic.0.28048-0 CrossRefGoogle Scholar
  5. Bouchery T, Harris NL (2017) Specific repair by discerning macrophages. Science 356:1014.  https://doi.org/10.1126/science.aan6782 CrossRefGoogle Scholar
  6. Bretscher P, Cohn M (1970) A theory of self–nonself discrimination. Science 169:1042–1049CrossRefGoogle Scholar
  7. Burnet FM (1960) Immunological recognition of self. In: Nobel Lectures in Physiology or Medicine, vol 3, pp 689–701Google Scholar
  8. Clark WR (2008) In defense of self: how the immune system really works. Oxford University Press, New YorkCrossRefGoogle Scholar
  9. Cohen IR (2000) Discrimination and dialogue in the immune system. Semin Immunol 12:215–219.  https://doi.org/10.1006/smim.2000.0234 (discussion 257–344) CrossRefGoogle Scholar
  10. Donaldson GP, Ladinsky MS, Yu KB et al (2018) Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360:795–800.  https://doi.org/10.1126/science.aaq0926 CrossRefGoogle Scholar
  11. Eming SA, Wynn TA, Martin P (2017) Inflammation and metabolism in tissue repair and regeneration. Science 356:1026–1030.  https://doi.org/10.1126/science.aam7928 CrossRefGoogle Scholar
  12. Goldberg GW, Marraffini LA (2015) Resistance and tolerance to foreign elements by prokaryotic immune systems—curating the genome. Nat Rev Immunol 15:717–724.  https://doi.org/10.1038/nri3910 CrossRefGoogle Scholar
  13. Goldberg GW, Jiang W, Bikard D, Marraffini LA (2014) Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting. Nature 514:633–637.  https://doi.org/10.1038/nature13637 CrossRefGoogle Scholar
  14. Gordon S, Plüddemann A (2018) Macrophage clearance of apoptotic cells: a critical assessment. Front Immunol 9:127.  https://doi.org/10.3389/fimmu.2018.00127 CrossRefGoogle Scholar
  15. Hayday AC (2009) Gammadelta T cells and the lymphoid stress-surveillance response. Immunity 31:184–196.  https://doi.org/10.1016/j.immuni.2009.08.006 CrossRefGoogle Scholar
  16. Hille F, Richter H, Wong SP et al (2018) The biology of CRISPR-Cas: backward and forward. Cell 172:1239–1259.  https://doi.org/10.1016/j.cell.2017.11.032 CrossRefGoogle Scholar
  17. Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118CrossRefGoogle Scholar
  18. Ishino Y, Krupovic M, Forterre P (2018) History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol 200:e00580.  https://doi.org/10.1128/jb.00580-17 CrossRefGoogle Scholar
  19. Koonin EV (2017) Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: common ancestry vs convergence. Biol Direct 12:5.  https://doi.org/10.1186/s13062-017-0177-2 CrossRefGoogle Scholar
  20. Koonin EV (2018, this issue) CRISPR: a new principle of genome engineering linked to conceptual shifts in evolutionary biology. Biol Philos.  https://doi.org/10.1007/s10539-018-9658-7 CrossRefGoogle Scholar
  21. Koonin EV, Krupovic M (2015) Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat Rev Genet 16:184–192.  https://doi.org/10.1038/nrg3859 CrossRefGoogle Scholar
  22. Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78.  https://doi.org/10.1016/j.mib.2017.05.008 CrossRefGoogle Scholar
  23. Ledford H (2016) The unsung heroes of CRISPR. Nature 535:342–344.  https://doi.org/10.1038/535342a CrossRefGoogle Scholar
  24. Levy A, Goren MG, Yosef I et al (2015) CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520:505–510.  https://doi.org/10.1038/nature14302 CrossRefGoogle Scholar
  25. Makarova KS, Aravind L, Grishin NV et al (2002) A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res 30:482–496CrossRefGoogle Scholar
  26. Makarova KS, Grishin NV, Shabalina SA et al (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:7.  https://doi.org/10.1186/1745-6150-1-7 CrossRefGoogle Scholar
  27. Makarova KS, Haft DH, Barrangou R et al (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477.  https://doi.org/10.1038/nrmicro2577 CrossRefGoogle Scholar
  28. Marraffini LA, Sontheimer EJ (2010) Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463:568–571.  https://doi.org/10.1038/nature08703 CrossRefGoogle Scholar
  29. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045.  https://doi.org/10.1146/annurev.iy.12.040194.005015 CrossRefGoogle Scholar
  30. Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182.  https://doi.org/10.1007/s00239-004-0046-3 CrossRefGoogle Scholar
  31. Morange M (2015) What history tells us XXXVII. CRISPR-Cas: the discovery of an immune system in prokaryotes. J Biosci 40:221–223CrossRefGoogle Scholar
  32. Nuñez JK, Harrington LB, Kranzusch PJ et al (2015) Foreign DNA capture during CRISPR-Cas adaptive immunity. Nature 527:535–538.  https://doi.org/10.1038/nature15760 CrossRefGoogle Scholar
  33. Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology (Reading, England) 151:653–663.  https://doi.org/10.1099/mic.0.27437-0 CrossRefGoogle Scholar
  34. Pradeu T (2012) The limits of the self: immunology and biological identity. Oxford University Press, New YorkCrossRefGoogle Scholar
  35. Pradeu T, Carosella E (2006) On the definition of a criterion of immunogenicity. Proc Natl Acad Sci USA 103:17858–17861CrossRefGoogle Scholar
  36. Savill J, Fadok V (2000) Corpse clearance defines the meaning of cell death. Nature 407:784–788.  https://doi.org/10.1038/35037722 CrossRefGoogle Scholar
  37. Shabalina SA, Koonin EV (2008) Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23:578–587.  https://doi.org/10.1016/j.tree.2008.06.005 CrossRefGoogle Scholar
  38. Stern A, Keren L, Wurtzel O et al (2010) Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet 26:335–340.  https://doi.org/10.1016/j.tig.2010.05.008 CrossRefGoogle Scholar
  39. Tauber AI (1994) The immune self: theory or metaphor?. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  40. Westra ER, Buckling A, Fineran PC (2014) CRISPR-Cas systems: beyond adaptive immunity. Nat Rev Microbiol 12:317–326.  https://doi.org/10.1038/nrmicro3241 CrossRefGoogle Scholar
  41. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455.  https://doi.org/10.1038/nature12034 CrossRefGoogle Scholar
  42. Yu W, Jiang N, Ebert PJR et al (2015) Clonal deletion prunes but does not eliminate self-specific αβ CD8(+) T lymphocytes. Immunity 42:929–941.  https://doi.org/10.1016/j.immuni.2015.05.001 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.ImmunoConcept, CNRS UMR5164University of BordeauxBordeauxFrance
  2. 2.Institut d’histoire et de philosophie des sciences et des techniques (IHPST), CNRS UMR8590Panthéon-Sorbonne UniversityParisFrance
  3. 3.Department of ImmunologyCHU Bordeaux HospitalBordeauxFrance

Personalised recommendations