Advertisement

Biology & Philosophy

, 33:8 | Cite as

Fifty shades of cladism

  • Andrew V. Z. Brower
Article
  • 190 Downloads

Abstract

Quinn (Biol Philos 32:581–598, 2017) offered seven definitions of “cladist” and discussed the context in which they are used in relation to historical and current debates in systematics. As a member of her study taxon, I offer some contextual color commentary, clarifications on the views of “pattern cladists” regarding monophyly, ancestors, synapomorphy and other concepts, a definition of “syncretist”, and some thoughts on cladistics and philosophy in the twenty first century.

Keywords

Cladistics Phylogenetics Systematics Hennig Society Parsimony Syncretism 

Notes

Acknowledgements

I think Aleta Quinn for providing the impetus for writing this essay, and anonymous reviewers for helpful suggestions. Support for work in my lab was provided through a collaborative grant, Dimensions US-Biota-São Paulo: Assembly and evolution of the Amazon biota and its environment: an integrated approach, supported by the US National Science Foundation (NSF DEB 1241056), National Aeronautics and Space Administration (NASA), and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP Grant 2012/50260-6).

References

  1. Barker D (2015) Seeing the wood for the trees: philosophical aspects of classical, Bayesian and likelihood approaches in statistical inference and some implications for phylogenetic analysis. Biol Philos 30:505–525CrossRefGoogle Scholar
  2. Baum DA (2017) Does the future of phylogenetic systematics really rest on the legacy of one mid-20th century German entomologist? Q Rev Biol 92:450–453CrossRefGoogle Scholar
  3. Brady RH (1985) On the independence of systematics. Cladistics 1:113–126CrossRefGoogle Scholar
  4. Brower AVZ (2000) Evolution is not an assumption of cladistics. Cladistics 16:143–154CrossRefGoogle Scholar
  5. Brower AVZ (2016) Are we all cladists? In: Williams DM, Schmitt M, Wheeler QD (eds) The future of phylogenetic systematics: the legacy of Willi Hennig. Cambridge University Press, Cambridge, pp 88–114CrossRefGoogle Scholar
  6. Brower AVZ (2017) Parsimony be damned! Cladistics 33:667–670CrossRefGoogle Scholar
  7. Brower AVZ (2018) Statistical consistency and phylogenetic inference: a brief review. Cladistics (early view).  https://doi.org/10.1111/cla.12211 Google Scholar
  8. Brower AVZ, de Pinna MCC (2012) Homology and errors. Cladistics 28:529–538CrossRefGoogle Scholar
  9. Brower AVZ, de Pinna MCC (2014) About nothing. Cladistics 30:330–336CrossRefGoogle Scholar
  10. Brower AVZ, Schawaroch V (1996) Three steps of homology assessment. Cladistics 12:265–272Google Scholar
  11. Darwin C (1859) On the origin of species. John Murray, LondonGoogle Scholar
  12. de Pinna MCC (1991) Concepts and tests of homology in the cladistic paradigm. Cladistics 7:367–394CrossRefGoogle Scholar
  13. de Queiroz K (1988) Systematics and the Darwinian revolution. Philos Sci 55:238–259CrossRefGoogle Scholar
  14. Ebach MC, Morrone JJ, Williams DM (2008) A new cladistics of cladists. Biol Philos 23:153–156CrossRefGoogle Scholar
  15. Editors (2016) Editorial. Cladistics 32:1CrossRefGoogle Scholar
  16. Farris JS (1979a) On the naturalness of phylogenetic classification. Syst Zool 28:200–214CrossRefGoogle Scholar
  17. Farris JS (1979b) The information content of the phylogenetic system. Syst Zool 28:483–519CrossRefGoogle Scholar
  18. Farris JS (1983) The logical basis of phylogenetic analysis. In: Platnick NI, Funk VA (eds) Advances in cladistics. Columbia University Press, New York, pp 7–36Google Scholar
  19. Farris JS (1999) Likelihood and inconsistency. Cladistics 15:199–204Google Scholar
  20. Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410CrossRefGoogle Scholar
  21. Fitzhugh K (1997) Cladograms as explanatory hypotheses. (talk at Willi Hennig Society Meeting, Washington, DC)Google Scholar
  22. Fitzhugh K (2006) The abduction of phylogenetic hypotheses. Zootaxa 1145:1–110Google Scholar
  23. Hennig W (1950) Grundzüge einer Theorie der phylogenetischen Systematik. Deutscher Zentralverlag, BerlinGoogle Scholar
  24. Hennig W (1966) Phylogenetic systematics. University of Illinois Press, UrbanaGoogle Scholar
  25. Hull DL (1988) Science as a process. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  26. Judd DD, Brower AVZ (2002) Abstracts of the 20th annual meeting of the Willi Hennig Society. Cladistics 18:218–236CrossRefGoogle Scholar
  27. Kluge AG (1997) Testability and the refutation and corroboration of cladistic hypotheses. Cladistics 13:81–96CrossRefGoogle Scholar
  28. Kluge AG (1998) Total evidence or taxonomic congruence: cladistics or consensus classification. Cladistics 14:151–158CrossRefGoogle Scholar
  29. Kluge AG (1999) The science of phylogenetic systematics: explanation, prediction, and test. Cladistics 15:429–436CrossRefGoogle Scholar
  30. Lankester ER (1870) On the use of the term homology in modern zoology, and the distinction between homogenetic and homoplastic agreements. Ann Mag Nat Hist (4th Ser.) 6:34–43CrossRefGoogle Scholar
  31. MacLeay WS (1819) Horae entomologicae: or essays on the annulose animals. S. Bagster, LondonCrossRefGoogle Scholar
  32. Mayr E (1982) The growth of biological thought. Belknap Press, CambridgeGoogle Scholar
  33. Morrison DA (2016) Genealogies: pedigrees and phylogenies are reticulating networks not just divergent trees. Evol Biol 43:456–473CrossRefGoogle Scholar
  34. Nelson GJ, Platnick NI (1981) Systematics and biogeography: cladistics and vicariance. Columbia University Press, New YorkGoogle Scholar
  35. Novick A (2016) On the origins of the quinarian system of classification. J Hist Biol 49:95–133CrossRefGoogle Scholar
  36. Owen R (1992) The Hunterian Lectures in comparative anatomy, May and June 1837. University of Chicago Press, ChicagoGoogle Scholar
  37. Patterson C (1981) Significance of fossils in determining evolutionary relationships. Annu Rev Ecol Syst 12:195–223CrossRefGoogle Scholar
  38. Platnick NI (1979) Philosophy and the transformation of cladistics. Syst Zool 28:537–546CrossRefGoogle Scholar
  39. Popper KR (1959) The logic of scientific discovery. Basic Books, New YorkGoogle Scholar
  40. Popper KR (1979) Objective knowledge—an evolutionary approach. Clarendon Press, OxfordGoogle Scholar
  41. Quinn A (2016) Phylogenetic inference to the best explanation and the bad lot argument. Synthese 193:3025–3039CrossRefGoogle Scholar
  42. Quinn A (2017) When is a cladist not a cladist? Biol Philos 32:581–598CrossRefGoogle Scholar
  43. Rieppel O (2008) Hypothetico-deductivism in systematics: fact or fiction? Pap Avulsos Zool 48:263–273Google Scholar
  44. Rindal E, Brower AVZ (2011) Do model-based phylogenetic analyses perform better than parsimony? A test with empirical data. Cladistics 27:331–334CrossRefGoogle Scholar
  45. Schuh RT, Brower AVZ (2009) Biological systematics: principles and applications, 2nd edn. Cornell University Press, IthacaGoogle Scholar
  46. Siddall ME, Kluge AG (1997) Probabilism and phylogenetic inference. Cladistics 13:313–336CrossRefGoogle Scholar
  47. Simon M (2016) Twitter nerd-fight reveals a long, bizarre scientific feud. Wired Magazine Simon. https://www.wired.com/2016/02/twitter-nerd-fight-reveals-a-long-bizarre-scientific-feud/
  48. Sober E (1985) A likelihood justification of parsimony. Cladistics 1:209–233CrossRefGoogle Scholar
  49. Sober E (1988) Reconstructing the past: parsimony, evolution and inference. MIT Press, CambridgeGoogle Scholar
  50. Sober E (2015) Ockham’s razors: a user’s manual. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  51. Sokal RR, Sneath PHA (1963) Principles of numerical taxonomy. W. H. Freeman & Co., San FranciscoGoogle Scholar
  52. Vogt L (2008) The unfalsifiability of cladograms and its consequences. Cladistics 24:62–73CrossRefGoogle Scholar
  53. Vogt L (2014a) Why phylogeneticists should care less about Popper’s falsificationism. Cladistics 30:1–4CrossRefGoogle Scholar
  54. Vogt L (2014b) Popper and phylogenetics, a misguided rendezvous. Aust Syst Bot 27:85–94CrossRefGoogle Scholar
  55. Wenzel JW (2002) Presidential address: the role of the Willi Hennig Society in systematics. Cladistics 18:1–3CrossRefGoogle Scholar
  56. Wheeler WC, Coddington JA, Crowley LM, Dimitrov D, Goloboff PA, Griswold CE, Hormiga G, Prendini L, Ramírez MJ, Sierwald P, Almeida-Silva L, Alvarez-Padilla F, Arnedo MA, Benavides-Silva LR, Benjamin SP, Bond JE, Grismado CJ, Hasan E, Hedin MC, Izquierdo MA, Labarque FM, Ledford J, Lopardo L, Maddison WP, Miller JA, Piacentini LN, Platnick NI, Potolow D, Silva-Dávila D, Scharff N, Szüts T, Ubick D, Vink CJ, Wood HM, Zhang J (2017) The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics 33:574–616CrossRefGoogle Scholar
  57. Wiley EO (1981) Phylogenetics. Wiley, New YorkGoogle Scholar
  58. Williams DM, Ebach MC (2008) Foundations of systematics and biogeography. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Evolution and Ecology Group, Department of BiologyMiddle Tennessee State UniversityMurfreesboroUSA

Personalised recommendations