Biology & Philosophy

, 33:2 | Cite as

The generality of Constructive Neutral Evolution

  • T. D. P. BrunetEmail author
  • W. Ford Doolittle


Constructive Neutral Evolution (CNE) is an evolutionary mechanism that can explain much molecular inter-dependence and organismal complexity without assuming positive selection favoring such dependency or complexity, either directly or as a byproduct of adaptation. It differs from but complements other non-selective explanations for complexity, such as genetic drift and the Zero Force Evolutionary Law, by being ratchet-like in character. With CNE, purifying selection maintains dependencies or complexities that were neutrally evolved. Preliminary treatments use it to explain specific genetic and molecular structures or processes, such as retained gene duplications, the spliceosome, and RNA editing. Here we aim to expand the scope of such explanation beyond the molecular level, integrating CNE with Multi-Level Selection theory, and arguing that several popular higher-level selection scenarios are in fact instances of CNE. Suitably contextualized, CNE occurs at any level in the biological hierarchy at which natural selection as normally construed occurs. As examples, we focus on modularity in protein–protein interaction networks or “interactomes,” the origin of eukaryotic cells and the evolution of co-dependence in microbial communities—a variant of the “Black Queen Hypothesis” which we call the “Gray Queen Hypothesis”.


Constructive Neutral Evolution Evolution of complexity Black Queen Hypothesis Eukaryogenesis Protein–protein interaction networks Interactome 



Constructive Neutral Evolution


Protein–protein interaction networks


Zero-force evolutionary law


Black Queen Hypothesis


Gray Queen Hypothesis



We thank Dr. S. A. Inkpen, and the Dalhousie-Kings STS reading group for helpful comments, and NSERC Discovery Grant GLDSU 447989 for support.


  1. Archibald JM, Logsdon JM, Doolittle WF (1999) Recurrent paralogy in the evolution of archaeal chaperonins. Curr Biol 9(18):1053–S6CrossRefGoogle Scholar
  2. Archibald JM, Logsdon JM Jr, Doolittle WF (2000) Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplications in CCT genes. Mol Biol Evol 17(10):1456–1466CrossRefGoogle Scholar
  3. Atay O, Skotheim JM (2014) Modularity and predictability in cell signaling and decision making. Mol Biol of the Cell 25(22):3445–3450CrossRefGoogle Scholar
  4. Bell G (2001) Neutral macroecology. Science 293(5539):2413–2418CrossRefGoogle Scholar
  5. Ben-David E, Burga A, Krugkyak L (2017) A maternal-effect selfish element in Caenorhabditis elegans. Science 356(6342):1051–1055CrossRefGoogle Scholar
  6. Bernstein H, Byerly HC, Hopf FA, Michod RE (1984) Origin of sex. J Theor Biol 110(3):323–351CrossRefGoogle Scholar
  7. Booth A, Doolittle WF (2015) Eukaryogenesis, how special really? Proc Natl Acad Sci USA 112(33):10278–10285CrossRefGoogle Scholar
  8. Bridgham JT, Ortlund EA, Thornton JW (2009) An epistatic ratchet constrains the direction of glucocorticoid receptor evolution. Nature 461(7263):515–519CrossRefGoogle Scholar
  9. Brown CT, Hug LA, Thomas BC et al (2015) Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523:208–211CrossRefGoogle Scholar
  10. Brunet TDP, Doolittle WF (2015) Multi-Level Selection Theory and the evolutionary functions of transposable elements. Genome Biol Evol 7(8):2445–2457CrossRefGoogle Scholar
  11. Cafarelli TM, Desbuleux A, Wang Y et al (2017) Mapping, modeling, and characterization of protein-protein interactions on a proteomic scale. Curr Opin Struct Biol 44:201–210CrossRefGoogle Scholar
  12. Clarke E (2016) Levels of selection in biofilms: multispecies biofilms are not evolutionary individuals. Biol Philos 31(20):191–212CrossRefGoogle Scholar
  13. Cohen DM, Steger DJ (2017) Nuclear receptor function through genomics: lessons from the glucocorticoid receptor. Trends Endocrinol Metab 28(7):531–540CrossRefGoogle Scholar
  14. Covello P, Gray M (1993) On the evolution of RNA editing. Trends Genet 9(8):265–268CrossRefGoogle Scholar
  15. Doolittle WF (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14(8):307–311CrossRefGoogle Scholar
  16. Doolittle WF (2013) Is junk DNA bunk? A critique of ENCODE. Proc Natl Acad Sci USA 110(14):5294–5300CrossRefGoogle Scholar
  17. Doolittle WF (2017) Darwinizing Gaia. J Theor Biol 434:11–19CrossRefGoogle Scholar
  18. Doolittle WF, Booth A (2017) It’s the song, not the singer: an exploration of holobiosis and evolutionary theory. Biol Philos 32(1):5–24CrossRefGoogle Scholar
  19. Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284(5757):601–603CrossRefGoogle Scholar
  20. Doolittle WF, Luke J, Archibald JM, Keeling PJ, Gray MW (2011) Comment on “Does constructive neutral evolution play an important role in the origin of cellular complexity?”. BioEssays 33(6):427–429CrossRefGoogle Scholar
  21. Embley TM, Williams TA (2015) Evolution: steps on the road to eukaryotes. Nature 521(7551):169–170CrossRefGoogle Scholar
  22. Fedoroff NV (2012) Transposable elements, epigenetics, and genome evolution. Science 338(6108):758–767CrossRefGoogle Scholar
  23. Fernandez A, Lynch M (2011) Non-adaptive origins of interactome complexity. Nature 474:502–505CrossRefGoogle Scholar
  24. Finnigan GC, Hanson-Smith V, Stevens TH, Thornton JW (2012) Evolution of increased complexity in a molecular machine. Nature 481(7381):360–364CrossRefGoogle Scholar
  25. Frey-Wyssling A (1978) Concerning the concept ‘organelle’. Experientia 34(4):547CrossRefGoogle Scholar
  26. Fullmer MS, Soucy SM, Gogarten JP (2015) The pan-genome as a shared genomic resource: mutual cheating, cooperation and the black queen hypothesis. Front Microbiol 6:728CrossRefGoogle Scholar
  27. Giovannoni SJ, Thrash JC, Temperton B (2014) Implications of streamlining theory for microbial ecology. ISME J 8:1553–1565CrossRefGoogle Scholar
  28. Godfrey-Smith P (1994) A modern history theory of functions. Nous 28(3):344–362CrossRefGoogle Scholar
  29. Golding I, Cox EC (2006) Physical nature of bacterial cytoplasm. Phys Rev Lett 96(9):09810CrossRefGoogle Scholar
  30. Gould SJ (1989) Wonderful life: the Burgess shale and the nature of life. Norton, New YorkGoogle Scholar
  31. Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci 205(1161):581–598CrossRefGoogle Scholar
  32. Gould SJ, Vrba ES (1982) Exaptation—a missing term in the science of form. Paleobiol 8(01):4–15CrossRefGoogle Scholar
  33. Gray MW, Lukeš J, Archibald JM, Keeling PJ, Doolittle WF (2010) Irremediable complexity? Science 330(6006):920–921CrossRefGoogle Scholar
  34. Grosche C, Funk HT, Maier UG, Zauner S (2012) The chloroplast genome of Pellia endiviifolia: gene content, RNA-editing pattern, and the origin of chloroplast editing. Genome Biol Evol 4(12):1349–1357CrossRefGoogle Scholar
  35. Hagstrom GI, Levin SA (2017) Marine ecosystems as complex adaptive systems: emergent patterns, critical transitions, and public goods. Ecosystems 20(3):458–476CrossRefGoogle Scholar
  36. Hartl F (2017) Protein misfolding diseases. In press, Ann Rev BiochemGoogle Scholar
  37. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402(6761 Suppl):C47–C52CrossRefGoogle Scholar
  38. Hughes T, Ekman D, Ardawatia H, Elofsson A, Liberles DA (2007) Evaluating dosage compensation as a cause of duplicate gene retention in Paramecium tetraurelia. Genome Biol 8(5):213CrossRefGoogle Scholar
  39. Hutchison CA, Chuang R-Y, Noskov VN et al (2016) Design and synthesis of a minimal bacterial genome. Science 351(6280):aad6253CrossRefGoogle Scholar
  40. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Ann Rev Genomics Hum Genet 2:343–372CrossRefGoogle Scholar
  41. Jablonski D (2008) Species selection: theory and data. Ann Rev Ecol Evol Syst 39:501–524CrossRefGoogle Scholar
  42. Jacob F (1977) Evolution and tinkering. Science 196(4295):1161–1166CrossRefGoogle Scholar
  43. Jeffery CJ (2003) Moonlighting proteins: old proteins learning new tricks. Trends Genet 19(8):415–417CrossRefGoogle Scholar
  44. Kapusta A, Feschotte C (2014) Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications. Trends Genet 30(10):439–452CrossRefGoogle Scholar
  45. Keeling PJ, McCutcheon JP, Doolittle WF (2015) Symbiosis becoming permanent: survival of the luckiest. Proc Natl Acad Sci 112(33):10101–10103CrossRefGoogle Scholar
  46. Kidwell MG (2002) Transposable elements and the evolution of genome size in eukaryotes. Genetica 115(1):49–63CrossRefGoogle Scholar
  47. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  48. Koonin EV (2016) Splendor and misery of adaptation, or the importance of neutral null for understanding evolution. BMC Biol 14(1):114CrossRefGoogle Scholar
  49. Kuo CH, Moran NA, Ochman H (2009) The consequences of genetic drift for bacterial genome complexity. Genome Res 19(8):1450–1454CrossRefGoogle Scholar
  50. Lamech LT, Mallam AL, Lambowitz AM (2014) Evolution of RNA-protein interactions: non-specific binding led to RNA splicing activity of fungal mitochondrial tyrosyl-tRNA sythetases. PLoS Biol 12(12):e1002028CrossRefGoogle Scholar
  51. Landry CR, Levy ED, Rabbo DA, Tarassov K, Michnick SW (2013) Extracting insight from noisy cellular networks. Cell 155(5):983–989CrossRefGoogle Scholar
  52. Lane N, Martin W (2010) The energetics of genome complexity. Nature 467(7318):929–934CrossRefGoogle Scholar
  53. Lane N, Martin WF (2015) Eukaryotes really are special, and mitochondria are why. Proc Natl Acad Sci 112(35):E4823CrossRefGoogle Scholar
  54. Launay G, Ceres N, Martin J (2017) Non-interacting proteins may resemble interacting proteins: prevalence and implications. Sci Rep 7:40419CrossRefGoogle Scholar
  55. Lukeš J, Archibald JM, Keeling PJ, Doolittle WF, Gray MW (2011) How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life 63(7):528–537CrossRefGoogle Scholar
  56. Lynch M, Conery JS (2000) The evolutionary fate and consequence of duplicate genes. Science 290:1151–1155CrossRefGoogle Scholar
  57. Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154(1):459–473Google Scholar
  58. Lynch M, Marinov GK (2017) Membranes, energetics, and evolution across the prokaryote-eukaryote divide. eLife 6:e20437CrossRefGoogle Scholar
  59. Majumder S, DeMott CM, Reverdatto S, Burz DS, Shektman A (2016) Total cellular RNA modulates protein activity. Biochemistry 55(32):4568–4573CrossRefGoogle Scholar
  60. Martin WF, Koonin EV (2006) Introns and the origin of nucleus-cytosol compartmentalization. Nature 440:41–45CrossRefGoogle Scholar
  61. Martiny AC, Treseder K, Pusch G (2013) Phylogenetic conservation of functional traits in microorganisms. ISME J 7:830–838CrossRefGoogle Scholar
  62. McShea DW, Brandon RN (2010) Biology’s first law: the tendency for diversity and complexity to increase in evolutionary systems. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  63. McShea DW, Venit EP (2001) What is a part. In: Wagner GP (ed) The character concept in evolutionary biology. Academic Press, London, pp 259–284CrossRefGoogle Scholar
  64. Mendoza E (2013) Organelle and functional module resources. In: Dubitzky W, Wolkenhauer O, Yokota H, Cho K-H (eds) Encyclopedia of systems biology. Springer, New York, pp. 1609–1611CrossRefGoogle Scholar
  65. Michod RE (1997) Cooperation and conflict in the evolution of individuality. I. Multilevel selection of the organism. Am Nat 149(4):607–645CrossRefGoogle Scholar
  66. Morris JJ, Lenski RE, Zinser ER (2012) The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. MBio 3(2):e00036–12CrossRefGoogle Scholar
  67. Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103(23):8577–8582CrossRefGoogle Scholar
  68. Novichkov PS, Wolf YI, Dubchak I, Koonin EV (2009) Trends in prokaryotic evolution revealed by comparison of closely related bacterial and archaeal genomes. J Bacteriol 191(1):65–73CrossRefGoogle Scholar
  69. O’Malley MA, Wideman JG, Ruiz-Trillo I (2016) Losing Complexity: the Role of Simplification in Macroevolution. Trends Ecol Evol 31(8):608–621CrossRefGoogle Scholar
  70. Okasha S (2005) Multilevel selection and the major transitions in evolution. Philos Sci 72(5):1013–1025CrossRefGoogle Scholar
  71. Omer S, Harlow TJ, Gogarten JP (2017) Does sequence conservation provide evidence for biological function? Trends Microbiol 25(1):11–18CrossRefGoogle Scholar
  72. Orgel LE, Crick FHC (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607CrossRefGoogle Scholar
  73. Pande S, Kost C (2017) Bacterial unculturability and the formation of intercellular metabolic networks. Trends Microbiol 25(5):349–361CrossRefGoogle Scholar
  74. Rutherford SL (2003) Between genotype and phenotype: protein chaperones and evolvability. Nat Rev Genet 4:263–274CrossRefGoogle Scholar
  75. Sancar A (2008) The intelligent clock and the Rube Goldberg clock. Nat Struct Mol Biol 15(1):23–24CrossRefGoogle Scholar
  76. Simpson L, Thiemabb OH, Savill NJ, Alfonzo JD, Maslov DA (2000) Evolution of RNA editing in trypanosome mitochondria. Proc Natl Acad Sci USA 97:6986–6993CrossRefGoogle Scholar
  77. Sorrells TR, Johnson AD (2015) Making sense of transcription networks. Cell 161(4):714–723CrossRefGoogle Scholar
  78. Stoltzfus A (1999) On the possibility of constructive neutral evolution. J Mol Evol 49(2):169–181CrossRefGoogle Scholar
  79. Szathmary E, Smith JM (1995) Major transitions in evolution. Oxford University Press, OxfordGoogle Scholar
  80. Van Melderen L (2010) Toxin-antitoxin systems: why so many, what for? Curr Opin Microbiol 13(6):781–785CrossRefGoogle Scholar
  81. Varzi A (2016) Mereology. The Stanford encyclopedia of philosophy. Zalta EN (ed). Accessed 7 Nov 2017
  82. Wang Z, Zhang J (2007) In search of the biological significance of modular structures in protein networks. PLoS Comput Biol 3(6):e107CrossRefGoogle Scholar
  83. Wolf YI, Koonin EV (2013) Genome reduction as the dominant mode of evolution. BioEssays 35(9):829–837CrossRefGoogle Scholar
  84. Yang JR, Liao BY, Zhuang SM, Zhang J (2012) Protein misinteraction avoidance causes highly expressed proteins to evolve slowly. Proc Natl Acad Sci 109(14):E831–E840CrossRefGoogle Scholar
  85. Zuckerkandl E (1992) Revisiting junk DNA. J Mol Evol 34(3):259–271CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of History and Philosophy of ScienceUniversity of CambridgeCambridgeUK
  2. 2.Department of Biochemistry and Molecular BiologyDalhousie UniversityHalifaxCanada

Personalised recommendations