Biology & Philosophy

, Volume 31, Issue 6, pp 797–817 | Cite as

Organisms or biological individuals? Combining physiological and evolutionary individuality

  • Thomas Pradeu


The definition of biological individuality is one of the most discussed topics in philosophy of biology, but current debate has focused almost exclusively on evolution-based accounts. Moreover, several participants in this debate consider the notions of a biological individual and an organism as equivalent. In this paper, I show that the debates would be considerably enriched and clarified if philosophers took into account two elements. First, physiological fields are crucial for the understanding of biological individuality. Second, the category of biological individuals should be divided into two subcategories: physiological individuals and evolutionary individuals, which suggests that the notions of organism and biological individual should not be used interchangeably. I suggest that the combination of an evolutionary and a physiological perspective will enable biologists and philosophers to supply an account of biological individuality that will be both more comprehensive and more in accordance with scientific practices.


Biological individuality Organism Physiology Immunology 



I thank Leonardo Bich, Ellen Clarke, John Dupré, Marc Ereshefsky, Adam Ferner, Scott Gilbert, Peter Godfrey-Smith, Philippe Huneman, Richard Lewontin, Margaret McFall-Ngai, Maureen O’Malley, Alessandro Minelli, Makmiller Pedroso, and Elliott Sober for comments on previous drafts of this paper. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme–grant agreement n° 637647 – IDEM.


  1. Anderton SM, Wraith DC (2002) Selection and fine-tuning of the autoimmune T-cell repertoire. Nat Rev Immunol 2:487–498. doi: 10.1038/nri842 CrossRefGoogle Scholar
  2. Arnellos A, Moreno A, Ruiz-Mirazo K (2013) Organizational requirements for multicellular autonomy: insights from a comparative case study. Biol Philos 29:851–884. doi: 10.1007/s10539-013-9387-x CrossRefGoogle Scholar
  3. Bäckhed F, Ley RE, Sonnenburg JL et al (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920. doi: 10.1126/science.1104816 CrossRefGoogle Scholar
  4. Bechtel W (2006) Discovering cell mechanisms: the creation of modern cell biology. Cambridge University Press, New YorkGoogle Scholar
  5. Bernard C (1974) [1878] Lectures on the phenomena of life common to animals and plants. Thomas, SpringfieldGoogle Scholar
  6. Bock WJ (1989) Organisms as functional machines: a connectivity explanation. Am Zool 29:1119–1132CrossRefGoogle Scholar
  7. Bosch TCG, McFall-Ngai MJ (2011) Metaorganisms as the new frontier. Zool Jena Ger 114:185–190. doi: 10.1016/j.zool.2011.04.001 CrossRefGoogle Scholar
  8. Bouchard F (2008) Causal processes, fitness, and the differential persistence of lineages. Philos Sci 75:560–570. doi: 10.1086/594507 CrossRefGoogle Scholar
  9. Bouchard F, Huneman P (2013) From groups to individuals: perspectives on biological associations and emerging individuality. MIT Press, CambridgeGoogle Scholar
  10. Bright M, Bulgheresi S (2010) A complex journey: transmission of microbial symbionts. Nat Rev Microbiol 8:218–230. doi: 10.1038/nrmicro2262 CrossRefGoogle Scholar
  11. Brock DA, Callison WÉ, Strassmann JE, Queller DC (2016) Sentinel cells, symbiotic bacteria and toxin resistance in the social amoeba Dictyostelium discoideum. Proc R Soc B 283:20152727. doi: 10.1098/rspb.2015.2727 CrossRefGoogle Scholar
  12. Buchman TG (2002) The community of the self. Nature 420:246–251. doi: 10.1038/nature01260 CrossRefGoogle Scholar
  13. Burnet FM (1960) Immunological recognition of self. Nobel Lect Physiol Med 3:689–701Google Scholar
  14. Burnet FM (1962) The integrity of the body: a discussion of modern immunological ideas. Harvard University Press, CambridgeCrossRefGoogle Scholar
  15. Burnet FM (1969) Cellular immunology: self and notself. Cambridge University Press, CambridgeGoogle Scholar
  16. Buss LW (1987) The evolution of individuality. Princeton University Press, PrincetonGoogle Scholar
  17. Canguilhem G (1994a) [1963] La constitution de la physiologie comme science. Etudes d’histoire et de philosophies des sciences concernant les vivants et la vie. Vrin, Paris, pp 226–273Google Scholar
  18. Canguilhem G (1994b) [1966] Le tout et la partie dans la pensée biologique. Etudes d’histoire et de philosophie des sciences concernant le vivant et la vie. Vrin, Paris, pp 319–333Google Scholar
  19. Cannon WB (1926) Physiological regulation of normal states. Some tentative postulates concerning biological homeostasis. In: Pettit A (ed) À Charles Richet, ses amis, ses collègues, ses élèves. Les Editions médicales, Paris, pp 91–93Google Scholar
  20. Cannon WB (1929) Organization for physiological homeostasis. Physiol Rev 9:399–431Google Scholar
  21. Chen G, Zhuchenko O, Kuspa A (2007) Immune-like phagocyte activity in the social amoeba. Science 317:678–681. doi: 10.1126/science.1143991 CrossRefGoogle Scholar
  22. Cheung T (2006) From the organism of a body to the body of an organism: occurrence and meaning of the word “organism” from the seventeenth to the nineteenth centuries. Br J Hist Sci 39:319–339CrossRefGoogle Scholar
  23. Cheung T (2010) What is an “Organism”? On the occurrence of a new term and its conceptual transformations 1680–1850. Hist Philos Life Sci 32:155–194Google Scholar
  24. Child CM (1915) Individuality in organisms. The University of Chicago press, ChicagoCrossRefGoogle Scholar
  25. Chu H, Mazmanian SK (2013) Innate immune recognition of the microbiota promotes host–microbial symbiosis. Nat Immunol 14:668–675. doi: 10.1038/ni.2635 CrossRefGoogle Scholar
  26. Clarke E (2011) The problem of biological individuality. Biol Theory 5:312–325CrossRefGoogle Scholar
  27. Clarke E (2013) The multiple realizability of biological individuals. J Philos 8:413–435Google Scholar
  28. Cohen IR (2000) Tending Adam’s garden: evolving the cognitive immune self. Academic Press, San DiegoCrossRefGoogle Scholar
  29. Cooper SJ (2008) From Claude Bernard to Walter Cannon. Emergence of the concept of homeostasis. Appetite 51:419–427. doi: 10.1016/j.appet.2008.06.005 CrossRefGoogle Scholar
  30. Cowley AW (2003) Genomics and homeostasis. Am J Physiol Regul Integr Comp Physiol 284:R611–R627. doi: 10.1152/ajpregu.00567.2002 CrossRefGoogle Scholar
  31. Cremer S, Sixt M (2009) Analogies in the evolution of individual and social immunity. Philos Trans R Soc Lond B Biol Sci 364:129–142. doi: 10.1098/rstb.2008.0166 CrossRefGoogle Scholar
  32. Damuth J, Heisler IL (1988) Alternative formulations of multilevel selection. Biol Philos 3:407–430. doi: 10.1007/BF00647962 CrossRefGoogle Scholar
  33. Dausset J (1981) The major histocompatibility complex in man. Science 213:1469–1474. doi: 10.1126/science.6792704 CrossRefGoogle Scholar
  34. DiBona GF (2005) Physiology in perspective: the wisdom of the body. Neural control of the kidney. Am J Physiol Regul Integr Comp Physiol 289:R633–R641. doi: 10.1152/ajpregu.00258.2005 CrossRefGoogle Scholar
  35. Duchesneau F (1987) Genèse de la théorie cellulaire. Bellarmin, Vrin, Montréal, ParisGoogle Scholar
  36. Duchesneau F (2010) Leibniz: le vivant et l’organisme. Vrin, ParisGoogle Scholar
  37. Dupré J, O’Malley M (2009) Varieties of living things: life at the intersection of lineage and metabolism. Philos Theory Biol. doi: 10.3998/ptb.6959004.0001.003 Google Scholar
  38. Ebert D (2013) The epidemiology and evolution of symbionts with mixed-mode transmission. Annu Rev Ecol Evol Syst 44:623–643. doi: 10.1146/annurev-ecolsys-032513-100555 CrossRefGoogle Scholar
  39. Eldredge N (1984) Large-scale biological entities and the evolutionary process. PSA Proc Bienn Meet Philos Sci Assoc 1984:551–566. doi: 10.1086/psaprocbienmeetp.1984.2.192526 Google Scholar
  40. Faith JJ, Guruge JL, Charbonneau M et al (2013) The long-term stability of the human gut microbiota. Science 341:1237439. doi: 10.1126/science.1237439 CrossRefGoogle Scholar
  41. Gardner A, Grafen A (2009) Capturing the superorganism: a formal theory of group adaptation. J Evol Biol 22:659–671. doi: 10.1111/j.1420-9101.2008.01681.x CrossRefGoogle Scholar
  42. Germain RN (2012) Maintaining system homeostasis: the third law of Newtonian immunology. Nat Immunol 13:902–906. doi: 10.1038/ni.2404 CrossRefGoogle Scholar
  43. Gilbert SF, Sapp J, Tauber AI (2012) A symbiotic view of life: we have never been individuals. Q Rev Biol 87:325–341CrossRefGoogle Scholar
  44. Godfrey-Smith P (2009) Darwinian populations and natural selection. Oxford University Press, OxfordCrossRefGoogle Scholar
  45. Godfrey-Smith P (2013) Darwinian individuals. In: Bouchard F, Huneman P (eds) From groups to individuals: evolution and emerging individuality. MIT Press, Cambridge, pp 17–36Google Scholar
  46. Godfrey-Smith P (2014) Philosophy of biology. Princeton University Press, PrincetonGoogle Scholar
  47. Gottlieb G (1992) Individual development and evolution: the genesis of novel behavior. Oxford University Press, New YorkGoogle Scholar
  48. Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci 205:581–598. doi: 10.1098/rspb.1979.0086 CrossRefGoogle Scholar
  49. Gould SJ, Lloyd EA (1999) Individuality and adaptation across levels of selection: how shall we name and generalize the unit of Darwinism? Proc Natl Acad Sci 96:11904–11909. doi: 10.1073/pnas.96.21.11904 CrossRefGoogle Scholar
  50. Griesemer J (2000) Development, culture, and the units of inheritance. Philos Sci 67:S348–S368. doi: 10.1086/392831 CrossRefGoogle Scholar
  51. Guay A, Pradeu T (2016) Individuals across the sciences. Oxford University Press, New YorkGoogle Scholar
  52. Haldane JS (1929) Claude Bernard’s conception of the internal environment. Science 69:453–454. doi: 10.1126/science.69.1791.453 CrossRefGoogle Scholar
  53. Hamburger J (1978) Discovering the individual: a fascinating journey to new frontiers of immunology and genetics, 1st edn. Norton, New YorkGoogle Scholar
  54. Herron MD, Rashidi A, Shelton DE, Driscoll WW (2013) Cellular differentiation and individuality in the “minor” multicellular taxa. Biol Rev Camb Philos Soc 88:844–861. doi: 10.1111/brv.12031 CrossRefGoogle Scholar
  55. Holmes FL (1986) Claude Bernard, The “Milieu Intérieur”, and regulatory physiology. Hist Philos Life Sci 8:3–25Google Scholar
  56. Hooper LV, Gordon JI (2001) Commensal host–bacterial relationships in the gut. Science 292:1115–1118CrossRefGoogle Scholar
  57. Hull DL (1978) A matter of individuality. Philos Sci 45:335–360CrossRefGoogle Scholar
  58. Hull D (1980) Individuality and selection. Annu Rev Ecol Syst 11:311–332. doi: 10.1146/ CrossRefGoogle Scholar
  59. Hull D (1992) Individual. In: Keller EF, Lloyd EA (eds) Keywords in evolutionary biology. Harvard University Press, Cambridge, pp 181–187Google Scholar
  60. Huneman P (2006) Naturalising purpose: from comparative anatomy to the “adventure of reason”. Stud Hist Philos Biol Biomed Sci 37:649–674. doi: 10.1016/j.shpsc.2006.09.004 CrossRefGoogle Scholar
  61. Huneman P (2014) Individuality as a theoretical scheme. II. About the weak individuality of organisms and ecosystems. Biol Theory 9:374–381. doi: 10.1007/s13752-014-0193-8 CrossRefGoogle Scholar
  62. Jerne NK (1974) Towards a network theory of the immune system. Ann Immunol 125C:373–389Google Scholar
  63. Kant I (2007) [1790] Critique of judgement. Oxford University Press, OxfordGoogle Scholar
  64. Kauffman SA (1993) The origins of order: self organization and selection in evolution. Oxford University Press, New YorkGoogle Scholar
  65. Keller EF (2007) The disappearance of function from “self-organizing systems”. In: Boogerd F (ed) Systems biology: philosophical foundations. Elsevier, Amsterdam, pp 303–317CrossRefGoogle Scholar
  66. Kim BH, Gadd GM (2008) Bacterial physiology and metabolism. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  67. Kotas ME, Medzhitov R (2015) Homeostasis, inflammation, and disease susceptibility. Cell 160:816–827. doi: 10.1016/j.cell.2015.02.010 CrossRefGoogle Scholar
  68. Lennox JG (2001) Aristotle’s philosophy of biology: studies in the origins of life science. Cambridge University Press, CambridgeGoogle Scholar
  69. Lewontin RC (1970) The units of selection. Annu Rev Ecol Syst 1:1–18. doi: 10.1146/ CrossRefGoogle Scholar
  70. Lewontin RC (1983) The organism as the subject and object of evolution. Scientia 77:63-82Google Scholar
  71. Lewontin RC (2000) The triple helix: gene, organism, and environment. Harvard University Press, CambridgeGoogle Scholar
  72. Lloyd E (2012) Units and levels of selection. In: Zalta EN (ed) The stanford encyclopedia of philosophy. Winter 2012.
  73. Loeb L (1930) Transplantation and individuality. Physiol Rev 10:547–616Google Scholar
  74. Loeb L (1937) The biological basis of individuality. Science 86:1–5CrossRefGoogle Scholar
  75. Loeb L (1945) The biological basis of individuality. Thomas, SpringfieldCrossRefGoogle Scholar
  76. Loeb L (1953) Organismal differentials and organ differentials. Proc Natl Acad Sci USA 39:127–134CrossRefGoogle Scholar
  77. Löwy I (1991) The immunological construction of the self. In: Tauber AI (ed) Organism and the origins of self. Kluwer, Dordrecht, pp 3–75Google Scholar
  78. Löwy I (2003) On guinea pigs, dogs and men: anaphylaxis and the study of biological individuality, 1902–1939. Stud Hist Philos Biol Biomed Sci 34:399–423Google Scholar
  79. Lüscher M (1961) Air-conditioned termite nests. Sci Am 205:138–145. doi: 10.1038/scientificamerican0761-138 CrossRefGoogle Scholar
  80. Lwoff A (1966) Interaction among virus, cell, and organism. Science 152:1216–1220CrossRefGoogle Scholar
  81. McFall-Ngai MJ (2002) Unseen forces: the influence of bacteria on animal development. Dev Biol 242:1–14. doi: 10.1006/dbio.2001.0522 CrossRefGoogle Scholar
  82. McFall-Ngai M, Hadfield MG, Bosch TCG et al (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA 110:3229–3236. doi: 10.1073/pnas.1218525110 CrossRefGoogle Scholar
  83. Medawar PB (1957) The uniqueness of the individual. Methuen, LondresCrossRefGoogle Scholar
  84. Michod RE (1999) Darwinian dynamics: evolutionary transitions in fitness and individuality. Princeton University Press, PrincetonGoogle Scholar
  85. Minelli A (2011) Animal development, an open-ended segment of life. Biol Theory 6:4–15. doi: 10.1007/s13752-011-0002-6 CrossRefGoogle Scholar
  86. Moulin A-M (1991) Le dernier langage de la médecine. PUF, ParisGoogle Scholar
  87. Noble D (2006) The music of life: biology beyond the genome. Oxford University Press, OxfordGoogle Scholar
  88. Noble D (2008) Claude Bernard, the first systems biologist, and the future of physiology. Exp Physiol 93:16–26. doi: 10.1113/expphysiol.2007.038695 CrossRefGoogle Scholar
  89. Okasha S (2006) Evolution and the levels of selection. Clarendon Press, Oxford University Press, OxfordCrossRefGoogle Scholar
  90. Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263. doi: 10.1038/nrmicro2990 CrossRefGoogle Scholar
  91. Pepper JW, Herron MD (2008) Does biology need an organism concept? Biol Rev Camb Philos Soc 83:621–627. doi: 10.1111/j.1469-185X.2008.00057.x CrossRefGoogle Scholar
  92. Perlman RL (2000) The concept of the organism in physiology. Theory Biosci 119:174–186. doi: 10.1078/1431-7613-00015 CrossRefGoogle Scholar
  93. Pradeu T (2008) Qu’est-ce qu’un individu biologique? In: Ludwig P, Pradeu T (eds) L’Individu: perspectives contemporaines. Vrin, ParisGoogle Scholar
  94. Pradeu T (2010) What is an organism? an immunological answer. Hist Philos Life Sci 32:247–268Google Scholar
  95. Pradeu T (2012) The limits of the self: immunology and biological identity. Oxford University Press, New YorkCrossRefGoogle Scholar
  96. Pradeu T (2013) Immunity and the emergence of individuality. In: Bouchard F, Huneman P (eds) From groups to individuals: evolution and emerging individuality. MIT Press, Cambridge, pp 77–96Google Scholar
  97. Pradeu T (2016) Editorial introduction: the many faces of biological individuality. Biol Philos. doi: 10.1007/s10539-016-9553-z
  98. Pradeu T, Carosella E (2006) The self model and the conception of biological identity in immunology. Biol Philos 21:235–252 doi: 10.1007/s10539-005-8621-6 CrossRefGoogle Scholar
  99. Queller DC, Strassmann JE (2009) Beyond society: the evolution of organismality. Philos Trans R Soc Lond B Biol Sci 364:3143–3155. doi: 10.1098/rstb.2009.0095 CrossRefGoogle Scholar
  100. Queller DC, Strassmann JE (2016) Problems of multi-species organisms: endosymbionts to holobionts. Biol Philos. doi: 10.1007/s10539-016-9547-x
  101. Richet CR (1894) La défense de l’organisme: cours de physiologie de la Faculté de médecine (1893–1894). Typographie Chamerot et Renouard, ParisGoogle Scholar
  102. Richet C (1913) Anaphylaxis. Nobel Lect Physiol Med 1:473–492Google Scholar
  103. Rowland NE (1998) Brain mechanisms of mammalian fluid homeostasis: insights from use of immediate early gene mapping. Neurosci Biobehav Rev 23:49–63CrossRefGoogle Scholar
  104. Ruiz-Mirazo K, Etxeberria A, Moreno A, Ibáñez J (2000) Organisms and their place in biology. Theory Biosci 119:209–233. doi: 10.1078/1431-7613-00018 CrossRefGoogle Scholar
  105. Sansonetti PJ, Medzhitov R (2009) Learning tolerance while fighting ignorance. Cell 138:416–420. doi: 10.1016/j.cell.2009.07.024 CrossRefGoogle Scholar
  106. Santelices Null (1999) How many kinds of individual are there? Trends Ecol Evol 14:152–155CrossRefGoogle Scholar
  107. Seeley TD (1995) The wisdom of the hive: the social physiology of honey bee colonies. Harvard University Press, CambridgeGoogle Scholar
  108. Sober E (1984) The nature of selection: evolutionary theory in philosophical focus. MIT Press, CambridgeGoogle Scholar
  109. Sober E (1991) Organisms, individuals, and units of selection. In: Tauber AI (ed) Organism and the origins of self. Springer, Netherlands, pp 275–296CrossRefGoogle Scholar
  110. Sober E (2000) Philosophy of biology, 2nd edn. Westview Press, BoulderGoogle Scholar
  111. Sober E, Wilson DS (1998) Unto others: the evolution and psychology of unselfish behavior. Harvard University Press, CambridgeGoogle Scholar
  112. Tauber AI (1991) Organism and the origins of self. Kluwer, DordrechtCrossRefGoogle Scholar
  113. Tauber AI (1994) The immune self: theory or metaphor?. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  114. Turner JS (2000) The extended organism: the physiology of animal-built structures. Harvard University Press, CambridgeGoogle Scholar
  115. Tyson JJ, Chen K, Novak B (2001) Network dynamics and cell physiology. Nat Rev Mol Cell Biol 2:908–916. doi: 10.1038/35103078 CrossRefGoogle Scholar
  116. Underhill DM, Iliev ID (2014) The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol 14:405–416. doi: 10.1038/nri3684 CrossRefGoogle Scholar
  117. Virchow R (1978) [1858] Cellular pathology as based upon physiological and pathological histology, Special edn. Classics of Medicine Library, BirminghamGoogle Scholar
  118. Virgin HW (2014) The virome in mammalian physiology and disease. Cell 157:142–150. doi: 10.1016/j.cell.2014.02.032 CrossRefGoogle Scholar
  119. Walz W (2005) Integrative physiology in the proteomics and post-genomics age. Humana Press, Totowa.CrossRefGoogle Scholar
  120. West SA, Kiers ET (2009) Evolution: what is an organism? Curr Biol CB 19:R1080–R1082. doi: 10.1016/j.cub.2009.10.048 CrossRefGoogle Scholar
  121. Wilson J (1999) Biological individuality: the identity and persistence of living entities. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  122. Wilson RA (2005) Genes and the agents of life: the individual in the fragile sciences, biology. Cambridge University Press, CambridgeGoogle Scholar
  123. Wilson RA, Barker M (2016) The biological notion of individual. In: Zalta EN (ed) The stanford encyclopedia of philosophy. Summer 2016.
  124. Wilson DS, Sober E (1989) Reviving the superorganism. J Theor Biol 136:337–356CrossRefGoogle Scholar
  125. Wing K, Sakaguchi S (2010) Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 11:7–13. doi: 10.1038/ni.1818 CrossRefGoogle Scholar
  126. Wolvekamp HP (1966) The concept of the organism as an integrated whole. Dialectica 20:196–214CrossRefGoogle Scholar
  127. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455. doi: 10.1038/nature12034 CrossRefGoogle Scholar
  128. Xu J, Gordon JI (2003) Honor thy symbionts. Proc Natl Acad Sci 100:10452–10459. doi: 10.1073/pnas.1734063100 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.ImmunoConcEpT, UMR5164CNRS and University of BordeauxBordeauxFrance

Personalised recommendations