Biology & Philosophy

, Volume 32, Issue 1, pp 5–24 | Cite as

It’s the song, not the singer: an exploration of holobiosis and evolutionary theory

Article

Abstract

That holobionts (microbial communities and their animal or plant hosts) are units of selection squares poorly with the observation that microbes are often recruited (horizontally acquired) from the environment, not passed down vertically from parent to offspring, as required for collective reproduction. The taxonomic makeup of a holobiont’s microbial community may vary over its lifetime and differ from that of conspecifics. In contrast, biochemical functions of the microbiota and contributions to host biology are more conserved, with taxonomically variable but functionally similar microbes recurring across generations and hosts. To save what is of interest in holobiont thinking, we propose casting metabolic and developmental interaction patterns, rather than the taxa responsible for them, as units of selection. Such units need not directly reproduce or form parent-offspring lineages: their prior existence has created the conditions under which taxa with the genes necessary to carry out their steps have evolved in large numbers. These taxa or genes will reconstruct the original interaction patterns when favorable conditions occur. Interaction patterns will vary (for instance by the alteration or addition of intermediates) in ways that affect the likelihood of and circumstances under which such reconstruction occurs. Thus, they vary in fitness, and evolution by natural selection will occur at this level. It is on the persistence, reconstruction, and spread of such interaction patterns that students of holobiosis should concentrate, we suggest. This model also addresses other multi-species collectively beneficial interactions, such as biofilms or biogeochemical cycles maintaining all life.

Keywords

Holobiont Hologenome Biofilm Unit of selection Natural selection 

References

  1. Bateson P (1978) Review of The Selfish Gene. Anim Behav 26:316–318CrossRefGoogle Scholar
  2. Bateson P (2006) The nest’s tale. A reply to Richard Dawkins. Biol Philos 21(4):553–558CrossRefGoogle Scholar
  3. Bonner JT (1974) On development: the biology of form. Harvard University Press, CambridgeGoogle Scholar
  4. Boon E, Meehan CJ, Whidden C, Wong DH-J, Langille MGI, Beiko RG (2014) Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol Rev 38:90–118CrossRefGoogle Scholar
  5. Booth A (2014) Symbiosis, selection and individuality. Biol Philos 29:657–673CrossRefGoogle Scholar
  6. Booth A, Doolittle WF (2015) Eukaryogenesis, how special really? Proc Natl Acad Sci USA 112(33):10278–10285CrossRefGoogle Scholar
  7. Booth A, Mariscal C, Doolittle WF (2016) The modern synthesis in the light of microbial genomics. Annu Rev Microbiol 70:279–297CrossRefGoogle Scholar
  8. Bordenstein SR (2013) The capacious hologenome. Zoology 116(5):260–261CrossRefGoogle Scholar
  9. Bordenstein SR, Theis KR (2015) Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol 13(8):e1002226CrossRefGoogle Scholar
  10. Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ, Singh A, Wilkins MJ, Wrighton KC, William KH, Banfield JF (2015) Unusual biology across a group comprising more than 15 % of domain Bacteria. Nature 523:206–211CrossRefGoogle Scholar
  11. Burke C, Steinberg P, Rusch D, Kjellberg S, Thomas T (2011) Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci USA 108(34):14288–14293CrossRefGoogle Scholar
  12. Charbonneau MR, Blanton LV, DiGiulio DB, Relman DA, Lebrilla CB, Mills DA, Gordon JI (2016) A microbial perspective of human developmental biology. Nature 535:48–55CrossRefGoogle Scholar
  13. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270Google Scholar
  14. Clarke E (2016) Levels of selection in biofilms: multispecies biofilms are not evolutionary individuals. Biol Philos 32(2):191CrossRefGoogle Scholar
  15. Clemente JC, Ursell LK, Parfey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270CrossRefGoogle Scholar
  16. Datta MS, Sliwerska E, Gore J, Polz MF, Cordero OX (2016) Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat Commun 7:11965CrossRefGoogle Scholar
  17. De Monte S, Rainey PB (2014) Nascent multicellular life and the emergence of individuality. J Biosci 39:237–248Google Scholar
  18. Doolittle WF (2013) Microbial neopleomorphism. Biol Philos 28(2):351–378CrossRefGoogle Scholar
  19. Doolittle WF (in press) Making the most of clade selection. Philos Sci 84Google Scholar
  20. Doolittle WF, Brunet TDP (2016) What is the tree of life? PLoS Genet 12(4):e1005912CrossRefGoogle Scholar
  21. Douglas AR, Werren JH (2015) Holes in the hologenome: why host-microbe symbioses are not holobionts. MBio 7(2):e02099-15CrossRefGoogle Scholar
  22. Ereshefsky M, Pedroso M (2015) Rethinking evolutionary individuality. Proc Natl Acad Sci USA 112(33):10126–10132CrossRefGoogle Scholar
  23. Falkowski P, Fenchel T, Delong EF (2008) The microbial engines that drive earth’s biogeochemical cycles. Science 320:1034–1039CrossRefGoogle Scholar
  24. Fullmer MS, Soucy SM, Gogarten JP (2015) The pan-genome as a shared genomic resource: mutual cheating, cooperation and the black queen hypothesis. Front Microbiol 6:728CrossRefGoogle Scholar
  25. Gilbert SF, Sapp J, Tauber AI (2012) A symbiotic view of life: we have never been individuals. Quart Rev Biol 87(4):325–341CrossRefGoogle Scholar
  26. Godfrey-Smith P (2009) Darwinian populations and natural selection. Oxford University Press, OxfordCrossRefGoogle Scholar
  27. Godfrey-Smith P (2013) Darwinian individuals. In: Bouchard F, Huneman P (eds) From groups to individuals: perspectives on biological associations and emerging individuality. MIT Press, Cambridge, pp 17–36Google Scholar
  28. Godfrey-Smith P (2015a) Reproduction, symbioisis and the eukaryotic cell. Proc Natl Acad Sci USA 112(33):10120–10125CrossRefGoogle Scholar
  29. Godfrey-Smith P (2015b) Philosophy of biology. Prinecteon University Press, PrincetonGoogle Scholar
  30. Gray MW, Lukes J, Archibald JM, Keeling PJ, Doolittle WF (2011) Cell biology: irremediable complexity. Science 330(6006):920–921CrossRefGoogle Scholar
  31. Griesemer J (2000) Development, culture and the units of inheritance. Philos Sci 67:S348–S368 (Proceedings) CrossRefGoogle Scholar
  32. Hull DL (1980) Individuality and selection. Annu Rev Ecol Syst 11:311–332CrossRefGoogle Scholar
  33. Jensen RA (1976) Enzyme recruitment in evolution of new function. Annu Rev Microbiol 30:409–425CrossRefGoogle Scholar
  34. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA 108:4578–4585CrossRefGoogle Scholar
  35. Laranjo M, Alexandre A, Oliveira S (2014) Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 169(2):2–17CrossRefGoogle Scholar
  36. Lenton T, Watson A (2011) Revolutions that made the Earth. Oxford University Press, OxfordCrossRefGoogle Scholar
  37. Lewontin R (1970) The units of selection. Annu Rev Ecol Syst 11(1):1–18CrossRefGoogle Scholar
  38. Lloyd EA (Forthcoming) Holobionts as units of selection: holobionts as interactors, reproducers, and manifestors of adaptationGoogle Scholar
  39. Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 365:1272–1277CrossRefGoogle Scholar
  40. Mas A, Jamshidi S, Lagadeuc Y, Eveillard D, Vandenkoornhuyse P (2016) Beyond the black queen hypothesis. ISME J. doi:10.1038/ismej.2016.22 Google Scholar
  41. Maynard Smith L, Szathmáry E (1995) The major transitions in evolution. WH Freeman, San FranciscoGoogle Scholar
  42. Moran NA, Sloan DB (2015) The hologenome concept: Helpful or hollow? PLoS Biol 13(12):e1002311CrossRefGoogle Scholar
  43. Morowitz HJ, Smith E, Srinivasan V (2008) Selfish metabolism. Complexity 14(2):7–9CrossRefGoogle Scholar
  44. Noda S, Kitade O, Inoue T, Kawai M, Kanuka M, Hiroshima K, Hongoh Y, Constantino R, Uys V, Zhong J, Kudo T, Ohkuma M (2007) Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp), their hosts, and their bacterial endosymbionts. Mol Ecol 16(6):1257–1266CrossRefGoogle Scholar
  45. O’Malley M (Forthcoming) Causal claims about microbiota: implications for individuality. Biol PhilosGoogle Scholar
  46. Odling-Smee FJ, Laland KV, Feldman MW (1996) Niche construction. Am Nat 147:641–648CrossRefGoogle Scholar
  47. Omelchenko MV, Makarova KS, Wolf YI, Rogozin IB, Koonin EV (2003) Evolution of mosaic operons by horizontal gene transfer and gene displacement in situ. Genome Biol 4(9):R55CrossRefGoogle Scholar
  48. Queller DC (1997) Cooperators since life began. Quart Rev Biol 72:184–188CrossRefGoogle Scholar
  49. Rader BA, Nyholm SV (2012) Host/microbe interactions revealed through “omics” in the symbiosis between the Hawaiian bobtail squid Eurypymna scolopes and the bioluminescent bacterium Vibrio fischeri. Biol Bull 223:103–111CrossRefGoogle Scholar
  50. Rao K, Safdar N (2016) Fecal microbiota transplantation for the treatment of Clostridium difficile infection. J. Hosp Med 11:56–61CrossRefGoogle Scholar
  51. Rison SGG, Thornton JM (2002) Pathway evolution, structurally speaking. Curr Opin Struct Biol 12(3):374–382CrossRefGoogle Scholar
  52. Røder HL, Sørensen SJ, Burmølle M (2016) Studying bacterial multispecies biofilms: Where to start? Trends Microbiol 24(6):503–513CrossRefGoogle Scholar
  53. Schmidt S, Sunyaev S, Bork P, Dandekar T (2003) Metabolites: a helping hand for pathway evolution? Trends Biochem Sci 28(6):336–341CrossRefGoogle Scholar
  54. Sommer RJ (2008) Homology and the hierarchy of biological systems. BioEssays 30:653–658CrossRefGoogle Scholar
  55. Sonnenburg JL, Bäckhed F (2016) Diet-microbiota interactions as moderators of human metabolism. Nature 535:56–64CrossRefGoogle Scholar
  56. Sterelny K, Smith KC, Dickison M (1996) The extended replicator. Biol Philos 11(3):377–403CrossRefGoogle Scholar
  57. Taxis T, Wolff S, Gregg SJ, Minton NO, Zhang C, Dai J, Schnabel RD, Taylor JF, Kerley MS, Pires JC, Lamberson WR, Conant GC (2015) The players may change but the game remains: network analyses of ruminal microbiomes suggest taxonomic differences mask functional similarity. Nucl Acids Res 42(20):9600–9612Google Scholar
  58. The Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214CrossRefGoogle Scholar
  59. Theis KR, Dheilly NM, Klassen JL, Brucker RM, Baines JF, Bosch TCG, Cryan JF, Gilbert SF, Goodnight CJ, Lloyd EA, Sapp J, Vandenkoornhuyse P, Zilber-Rosenberg I, Rosenberg E, Bordenstein SR (2016) Getting the hologenome concept right: and ecoevolutionary framework for hosts and their microbiomes. mSystems 1(2):e00028-16CrossRefGoogle Scholar
  60. Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-Garcia C, Olson JB, Erwin PM, López-Legenti S, Luter H, Chaves-Fonnegra A, Costa R, Schupp PJ, Steindler L, Erpenbeck D, Gilbert J, Knight R, Ackermann G, Victor Lopez J, Taylor MW, Thacker RW, Montoya JM, Hentschel U, Webster NS (2016) Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun 7:11870. doi:10.1038/ncomms11870 CrossRefGoogle Scholar
  61. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin ER (2005) Comparative metagenomics of microbial communities. Science 308(5721):554–557CrossRefGoogle Scholar
  62. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2007) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031CrossRefGoogle Scholar
  63. Wade WG (2013) The oral microbiome in health and disease. Pharmcol Res 69(1):137–143CrossRefGoogle Scholar
  64. Wagner GP (2007) The developmental genetics of homology. Nat Rev Genet 8:473–476CrossRefGoogle Scholar
  65. Wagner GP (2014) Homology, genes and evolutionary innovation. Princeton University Press, PrincetonCrossRefGoogle Scholar
  66. Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32(5):725–735CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyDalhousie UniversityHalifaxCanada
  2. 2.Department of PhilosophyDalhousie UniversityHalifaxCanada

Personalised recommendations