Biology & Philosophy

, Volume 31, Issue 1, pp 39–57 | Cite as

The evolution of failure: explaining cancer as an evolutionary process

  • Christopher Lean
  • Anya Plutynski


One of the major developments in cancer research in recent years has been the construction of models that treat cancer as a cellular population subject to natural selection. We expand on this idea, drawing upon multilevel selection theory. Cancer is best understood in our view from a multilevel perspective, as both a by-product of selection at other levels of organization, and as subject to selection (and drift) at several levels of organization. Cancer is a by-product in two senses. First, cancer cells co-opt signaling pathways that are otherwise adaptive at the organismic level. Second, cancer is also a by-product of features distinctive to the metazoan lineage: cellular plasticity and modularity. Applying the multilevel perspective in this way permits one to explain transitions in complexity and individuality in cancer progression. Our argument is a reply to Germain’s (2012) scepticism towards the explanatory relevance of natural selection for cancer. The extent to which cancer fulfills the conditions for being a paradigmatic Darwinian population depends on the scale of analysis, and the details of the purported selective scenario. Taking a multilevel perspective clarifies some of the complexities surrounding how to best understand the relevance of evolutionary thinking in cancer progression.


Cancer Multilevel selection Darwinian populations Tumors By-product of selection 


  1. Aktipis CA, Boddy AM, Jansen G, Hibner U, Hochberg ME, Maley CC, Wilkinson GS (2015) Cancer across the tree of life: cooperation and cheating in multicellularity. Phil Trans R Soc B 370(1673):20140219CrossRefGoogle Scholar
  2. Anderson A, Weaver A, Cummings PT, Quaranta V (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127(5):905–915CrossRefGoogle Scholar
  3. Bissell M, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17(3):320–329CrossRefGoogle Scholar
  4. Cairns J (1975) Mutation selection and the natural history of cancer. Nature 255:197–200CrossRefGoogle Scholar
  5. Cairns J (1978) Cancer science and society. Freeman and Co, San FranciscoGoogle Scholar
  6. Crespi B, Summers K (2006) Evolutionary biology of cancer. Trends Ecol Evol 20(10):545–551CrossRefGoogle Scholar
  7. Damuth J, Heisler IL (1988) Alternative formulations of multilevel selection. Biol Phil 3(4):407–430CrossRefGoogle Scholar
  8. Egeblad M, Nakasone ES, Werb Z (2010) “Tumors as organs: complex tissues that interface with the entire organism”. Dev Cell 18:884–901CrossRefGoogle Scholar
  9. Fisher R (1930) The genetical theory of natural selection. Clarendon, OxfordCrossRefGoogle Scholar
  10. Frank SA (2007) Dynamics of cancer: incidence, inheritance and evolution. Princeton, New JerseyGoogle Scholar
  11. Frank SA, Nowak MA (2004) Problems of somatic mutation and cancer. BioEssays 26(3):291–299CrossRefGoogle Scholar
  12. Gatenby RA et al (2006) Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res 66:5216–5223CrossRefGoogle Scholar
  13. Gatenby RA et al (2007) Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. Br J Cancer 97(5):646–653CrossRefGoogle Scholar
  14. Gause GF (1966) Aspects of antibiotic research. Chem Ind 36:1506–1513Google Scholar
  15. Gavert N, Ben-Ze’ev A (2010) Coordinating changes in cell adhesion and phenotype during EMT-like processes in cancer. F1000 Biol Rep 8(2):86Google Scholar
  16. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Swanton C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New Eng J Med 366(10):883–892CrossRefGoogle Scholar
  17. Germain PL (2012) Cancer cells and adaptive explanations. Biol Phil 27(6):785–810CrossRefGoogle Scholar
  18. Godfrey-Smith P (2009) Darwinian populations and natural selection, vol 22. Oxford University Press, OxfordCrossRefGoogle Scholar
  19. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481(7381):306–313CrossRefGoogle Scholar
  20. Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15(9):1010–1012CrossRefGoogle Scholar
  21. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70CrossRefGoogle Scholar
  22. Hausman DM (2012) Health, naturalism, and functional efficiency. Phil Sci 79(4):519–541CrossRefGoogle Scholar
  23. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. New Eng J Med 355(12):1253–1261CrossRefGoogle Scholar
  24. Karamysheva AF (2008) Mechanisms of angiogenesis. Biochemistry (Moscow) 73(7):751–762CrossRefGoogle Scholar
  25. Klein CA, Blankenstein TJ, Schmidt-Kittler O, Petronio M, Polzer B, Stoecklein NH, Riethmüller G (2002) Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360(9334):683–689CrossRefGoogle Scholar
  26. Komarova NL, Wodarz D (2004) The optimal rate of chromosome loss for the inactivation of tumor suppressor genes in cancer. Proc Natl Acad Sci USA 101(18):7017–7021CrossRefGoogle Scholar
  27. Komarova NL, Wodarz D (2005) Drug resistance in cancer: principles of emergence and prevention. Proc Natl Acad Sci 102(7):9714–9719CrossRefGoogle Scholar
  28. Lewontin RC (1970) The units of selection. Ann Rev Ecol Syst 1:1–18CrossRefGoogle Scholar
  29. Lloyd E (2012) Units and levels of selection. In: Edward NZ (ed) The stanford encyclopedia of philosophy. URL = <>
  30. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, New JerseyGoogle Scholar
  31. Martincorena I et al (2015) High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348(6237):880–886CrossRefGoogle Scholar
  32. Merlo LMF, Pepper JW, Reid BJ, Maley CC (2006) Cancer as an evolutionary and ecological process. Nat Rev Cancer 6(12):924–935CrossRefGoogle Scholar
  33. Michod RE (1997) Evolution of the individual. Am Nat 150(S1):S5–S21CrossRefGoogle Scholar
  34. Michod RE, Herron MD (2006) Cooperation and conflict during evolutionary transitions in individuality. J Evol Biol 19:1406–1409CrossRefGoogle Scholar
  35. Michor F, Iwasa Y, Nowak MA (2004) Dynamics of cancer progression. Nat Rev Cancer 4(3):197–205CrossRefGoogle Scholar
  36. Morange M (2012) What history tells us XXVIII. What is really new in the current evolutionary theory of cancer? J Biosci 37(4):609–612CrossRefGoogle Scholar
  37. Mori H et al (2002) Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci 99(12):8242–8247CrossRefGoogle Scholar
  38. Mueller M, Fuesnig NE (2004) “Friends or foes – bipolar effects of the tumor stroma in cancer. Nat Rev Cancer 4:839–849CrossRefGoogle Scholar
  39. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Wigler M (2011) Tumour evolution inferred by single-cell sequencing. Nature 472(7341):90–94CrossRefGoogle Scholar
  40. Nguyen LV, Vanner R, Dirks P, Eaves CJ (2010) Cancer stem cells: an evolving concept. Nat Rev Cancer 12(2):220–228Google Scholar
  41. Nowak MA (2006) Evolutionary dynamics: exploring the equations of life. Harvard University Press, MassachusettsGoogle Scholar
  42. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28CrossRefGoogle Scholar
  43. Odling-Smee FJ, Laland K, Feldman M (2003) Niche construction: a neglected process in evolution. Princeton University Press, New JerseyGoogle Scholar
  44. Okasha S (2005) Multi-level selection and the major transitions in evolution. Phil Sci Proc 72:1013–1025CrossRefGoogle Scholar
  45. Okasha S (2006) Evolution and the levels of selection. Oxford University Press, OxfordCrossRefGoogle Scholar
  46. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59(19):5002–5011Google Scholar
  47. Pepper JW, Sprouffske K, Maley CC (2007) Animal cell differentiation patterns suppress somatic evolution. PLoS Comput Biol 3(12):e250CrossRefGoogle Scholar
  48. Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9(4):285–293CrossRefGoogle Scholar
  49. Queller D, Strassman J (2009) Beyond society: the evolution of organismality. Phil Trans R Soc B 364:3143–3155CrossRefGoogle Scholar
  50. Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10:365–370CrossRefGoogle Scholar
  51. Sakr WA et al (1993) The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. J Urol 150(2 Pt 1):379–385Google Scholar
  52. Sober E, Wilson DS (1999) Unto others: the evolution and psychology of unselfish behaviour. Harvard University Press, MassachusettsGoogle Scholar
  53. Sterelny KR, Joyce B, Calcott B, Fraser B (2014) Cooperation and its evolution. MIT Press, MassachusettsGoogle Scholar
  54. Turner JR (1977) Butterfly mimicry: the genetical evolution of an adaptation. Evol Biol 10:163–206Google Scholar
  55. Weigelt B, Glas AM, Wessels LF, Witteveen AT, Peterse JL, van’t Veer LJ (2003) Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci 100(26):15901–15905CrossRefGoogle Scholar
  56. Weinberg RA (2014) The biology of cancer, 2nd (edn.). Garland Science, NYGoogle Scholar
  57. West S, Diggle SP, Buckling A, Gardner A, Griffin AS (2007) The social lives of microbes. Ann Rev Ecol Evol Syst 38:53–77CrossRefGoogle Scholar
  58. Williams P, Winzer K, Chan W, C´amara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond, Ser B 362(1483):1119–1134CrossRefGoogle Scholar
  59. Wilson DS (1975) A theory of group selection. Proc Natl Acad Sci 72(1):143–146CrossRefGoogle Scholar
  60. Wodarz D, Komarova NL (2014) Dynamics of cancer: mathematical foundations of oncology. World Scientific Publishing Co, SingaporeCrossRefGoogle Scholar
  61. Yachida S et al (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467:1114CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of PhilosophyAustralian National UniversityCanberraAustralia
  2. 2.Department of PhilosophyWashington University in St. LouisSt. LouisUSA

Personalised recommendations