Biology & Philosophy

, Volume 29, Issue 5, pp 657–673 | Cite as

Symbiosis, selection, and individuality

Article

Abstract

A recent development in biology has been the growing acceptance that holobionts, entities comprised of symbiotic microbes and their host organisms, are widespread in nature. There is agreement that holobionts are evolved outcomes, but disagreement on how to characterize the operation of natural selection on them. The aim of this paper is to articulate the contours of the disagreement. I explain how two distinct foundational accounts of the process of natural selection give rise to competing views about evolutionary individuality.

Keywords

Biological individuality Units of selection Symbiosis Holobiont Microbe 

References

  1. Anderson JB, Kohn LM (2007) Dikaryons, diploids, and evolution. In: Heitman J, Casselton L, Taylor J, Kronstad J (eds) Sex in fungi: molecular determination and evolutionary implications. ASM Press, NYGoogle Scholar
  2. Andersson JO (2000) Evolutionary genomics: Is Buchnera a bacterium or an organelle? Curr Biol 10(23):R866–R868. doi:10.1016/S0960-9822(00)00816-2 CrossRefGoogle Scholar
  3. Baumann P, Baumann L, Lai C-Y, Rouhbakhsh D, Moran NA, Clark MA (1995) Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu Rev Microbiol 49(1):55–94. doi:10.1146/annurev.mi.49.100195.000415 CrossRefGoogle Scholar
  4. Buss LW (1987) The evolution of individuality. Princeton University Press, PrincetonGoogle Scholar
  5. Clarke E (2011) Plant individuality and multilevel selection theory. In: Sterelny K, Calcott B (eds) The major transitions revisited. MIT Press, CambridgeGoogle Scholar
  6. Dawkins R (1976) The selfish gene: 30th anniversary edition–with a new introduction by the author. 30th anniversary. Oxford University Press, USAGoogle Scholar
  7. Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 449(7164):811–818. doi:10.1038/nature06245 CrossRefGoogle Scholar
  8. Doolittle WF (2009) Eradicating typological thinking in prokaryotic systematics and evolution. Cold Spring Harb Symp Quant Biol 74:197–204. doi:10.1101/sqb.2009.74.002 CrossRefGoogle Scholar
  9. Doolittle WF, Bapteste E (2007) Pattern pluralism and the tree of life hypothesis. Proc Natl Acad Sci 104(7):2043–2049. doi:10.1073/pnas.0610699104 CrossRefGoogle Scholar
  10. Douglas AE (2010) The symbiotic habit. Princeton University Press, PrincetonGoogle Scholar
  11. Douglas AE, Raven JA (2003) Genomes at the interface between bacteria and organelles. Philos Trans R Soc Lond B Biol Sci 358(1429):5–18. doi:10.1098/rstb.2002.1188 CrossRefGoogle Scholar
  12. Dupré J (2012a) Postgenomic darwinism. In: Dupré J (ed) Processes of life: essays in the philosophy of biology. Oxford University Press, Oxford, pp 143–160Google Scholar
  13. Dupré J (2012b) The polygenomic organism. In: Dupré J (ed) Processes of life: essays in the philosophy of biology. Oxford University Press, Oxford, pp 116–127Google Scholar
  14. Dupré J (2012c) Processes of life: essays in the philosophy of biology. Oxford University Press, Oxford; New YorkGoogle Scholar
  15. Dupré J, O’Malley MA (2012a) Size doesn’t matter: towards a more inclusive philosophy of biology. In: Dupré J (ed) Processes of life: essays in the philosophy of biology. Oxford University Press, Oxford, pp 163–187Google Scholar
  16. Dupré J, O’Malley MA (2012b) Varieties of living things: life at the intersection of lineage and metabolism. In: Dupré J (ed) Processes of life: essays in the philosophy of biology. Oxford University Press, Oxford, pp 206–229Google Scholar
  17. Ereshefsky M, Pedroso M (2013) Biological individuality: the case of biofilms. Biol Philos 28(2):331–349. doi:10.1007/s10539-012-9340-4 CrossRefGoogle Scholar
  18. Godfrey-Smith P (2007) Conditions for evolution by natural selection. J Philos 104(10):489–516Google Scholar
  19. Godfrey-Smith P (2009) Darwinian populations and natural selection. Oxford University Press, OxfordGoogle Scholar
  20. Godfrey-Smith P (2011). Agents and acacias: replies to Dennett, Sterelny, and Queller. Biol Philos Mar. doi:10.1007/s10539-011-9246-6. http://www.springerlink.com/content/a86543240317x430/
  21. Godfrey-Smith P (2012) Darwinian Individuals. In: Bouchard F, Huneman P (eds) From groups to individuals: perspectives on biological associations and emerging individuality. MIT Press, Cambridge, pp 17–36Google Scholar
  22. Godfrey-Smith P (2014) Philosophy of biology. Princeton University Press, PrincetonGoogle Scholar
  23. Gordon J, Knowlton N, Relman DA, Rohwer F, and Youle M (2013). Superorganisms and holobionts. Accessed October 26. http://www.microbemagazine.org/index.php?option=com_content&view=article&id=6300:superorganisms-and-holobionts&catid=1205&Itemid=1464
  24. Grosberg RK, Strathmann RR (2007) The evolution of multicellularity: a minor major transition? Annu Rev Ecol Evol Syst 38(1):621–654. doi:10.1146/annurev.ecolsys.36.102403.114735 CrossRefGoogle Scholar
  25. Hennig W (1999) Phylogenetic systematics. University of Illinois Press, IllinoisGoogle Scholar
  26. Hull DL (1980) Individuality and selection. Annu Rev Ecol Syst 11(1):311–332. doi:10.1146/annurev.es.11.110180.001523 CrossRefGoogle Scholar
  27. Hull DL, Langman RE, Glenn SS (2001) A general account of selection: biology, immunology, and behavior. Behav Brain Sci 24(03):511–528CrossRefGoogle Scholar
  28. Janzen DH (1977) What are dandelions and aphids? Am Nat 111(979):586–589CrossRefGoogle Scholar
  29. Lerat E, Daubin V, Ochman H, Moran NA (2005) Evolutionary origins of genomic repertoires in bacteria. PLoS Biol 3(5):e130. doi:10.1371/journal.pbio.0030130 CrossRefGoogle Scholar
  30. Lewontin RC (1970) The units of selection. Annu Rev Ecol Syst 1(1):1–18. doi:10.1146/annurev.es.01.110170.000245 CrossRefGoogle Scholar
  31. Lloyd E (2012) Units and levels of selection. In: Zalta EN (eds) The Stanford encyclopedia of philosophy. Winter 2012. http://plato.stanford.edu/archives/win2012/entries/selection-units/
  32. Mandrioli M, Manicardi GC (2013) Evolving aphids: one genome-one organism insects or holobionts? Invertebr Surviv J 10:1–6Google Scholar
  33. McFall-Ngai MJ, Henderson B, Ruby EG (2005) The influence of cooperative bacteria on animal host biology. Cambridge University Press, CambridgeGoogle Scholar
  34. Minard G, Mavingui P, Moro CV (2013) Diversity and function of bacterial microbiota in the mosquito holobiont. Parasites Vectors 6(1):146. doi:10.1186/1756-3305-6-146 CrossRefGoogle Scholar
  35. Mindell DP (1992) Phylogenetic consequences of symbioses: eukarya and eubacteria are not monophyletic taxa. Biosystems 27(1):53–62. doi:10.1016/0303-2647(92)90046-2 CrossRefGoogle Scholar
  36. Moran NA (2006) Symbiosis. Curr Biol 16(October):R866–R871. doi:10.1016/j.cub.2006.09.019 CrossRefGoogle Scholar
  37. Nyholm SV, McFall-Ngai M (2004) The winnowing: establishing the squid-vibrio symbiosis. Nat Rev Micro 2(8):632–642. doi:10.1038/nrmicro957 CrossRefGoogle Scholar
  38. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7(7):688–693. doi:10.1038/sj.embor.7400731 CrossRefGoogle Scholar
  39. Okasha S (2006) Evolution and the levels of selection. Clarendon Press, Oxford. http://nrs.harvard.edu/urn-3:hul.ebookbatch.OXSCH_batch:osouk9780199267972
  40. Pradeu T (2010) What is an organism? An immunological answer. Hist Philos Life Sci 32(2–3):247–267Google Scholar
  41. Pradeu T (2012) The limits of the self: immunology and biological identity. Oxford University Press, USA, Translated by Elizabeth VitanzaGoogle Scholar
  42. Santelices (1999) How many kinds of individual are there? Trends Ecol Evol (Pers Edn) 14(4):152–155CrossRefGoogle Scholar
  43. Singh Y, Ahmad J, Musarrat J, Ehtesham NZ, Hasnain SE (2013) Emerging importance of holobionts in evolution and in probiotics. Gut Pathog 5(May):12. doi:10.1186/1757-4749-5-12 CrossRefGoogle Scholar
  44. Sober E, Wilson DS (1999) Unto others: the evolution and psychology of unselfish behavior. Harvard University Press, CambridgeGoogle Scholar
  45. Stat M, Baker AC, Bourne DG, Correa AMS, Forsman Z, Huggett MJ, Pochon X et al (2012) Molecular delineation of species in the coral holobiont. Adv Mar Biol 63:1–65. doi:10.1016/B978-0-12-394282-1.00001-6 CrossRefGoogle Scholar
  46. Sterelny K (2011) Darwinian spaces: Peter Godfrey-Smith on selection and evolution. Biol Philos 26(February):489–500. doi:10.1007/s10539-010-9244-0 CrossRefGoogle Scholar
  47. The Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214. doi:10.1038/nature11234 CrossRefGoogle Scholar
  48. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449(October):804–810CrossRefGoogle Scholar
  49. Wollenberg MS, Ruby EG (2009) Population structure of Vibrio Fischeri within the light organs of euprymna scolopes squid from two oahu (Hawaii) populations. Appl Environ Microbiol 75(1):193–202. doi:10.1128/AEM.01792-08 CrossRefGoogle Scholar
  50. Xu J, Gordon JI (2003) Honor thy symbionts. Proc Natl Acad Sci 100(18):10452–10459. doi:10.1073/pnas.1734063100 CrossRefGoogle Scholar
  51. Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32(5):723–735. doi:10.1111/j.1574-6976.2008.00123.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Harvard UniversityCambridgeUSA

Personalised recommendations